Publications by authors named "Angela M K Foudray"

We are developing a novel, portable dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging. With a sensitive area of approximately 150 cm(2), this camera is based on arrays of lutetium oxyorthosilicate (LSO) crystals (1x1x3 mm(3)) coupled to 11x11-mm(2) position-sensitive avalanche photodiodes (PSAPD). GATE open source software was used to perform Monte Carlo simulations to optimize the parameters for the camera design.

View Article and Find Full Text PDF

We are investigating a high-sensitivity, high-resolution positron emission tomography (PET) system for clinical use in the detection, diagnosis and staging of breast cancer. Using conventional figures of merit, design parameters were evaluated for count rate performance, module dead time, and construction complexity. The detector system modeled comprises extremely thin position-sensitive avalanche photodiodes coupled to lutetium oxy-orthosilicate scintillation crystals.

View Article and Find Full Text PDF

We are developing a high resolution, high sensitivity PET camera dedicated to breast cancer imaging. We are studying two novel detector technologies for this imaging system: a scintillation detector comprising layers of small lutetium oxyorthosilicate (LSO) crystals coupled to new position sensitive avalanche photodiodes (PSAPDs), and a pure semiconductor detector comprising cadmium zinc telluride (CZT) crystal slabs with thin anode and cathode strips deposited in orthogonal directions on either side of each slab. Both detectors achieve 1 mm spatial resolution with 3-5 mm directly measured photon interaction depth resolution, which promotes uniform reconstructed spatial resolution throughout a compact, breast-size field of view.

View Article and Find Full Text PDF

We studied the performance of a dual-panel positron emission tomography (PET) camera dedicated to breast cancer imaging using Monte Carlo simulation. The PET camera under development has two 10x 15 cm(2) plates that are constructed from arrays of I X 1 X 3 mm(3) LSO crystals coupled to novel ultra-thin (<200 Am) silicon position-sensitive avalanche photodiodes (PSAPD). In this design the photodetectors are configured "edge-on" with respect to incoming photons which encounter a minimum of 2 cm thick of LSO with directly measured photon interaction depth.

View Article and Find Full Text PDF