Publications by authors named "Angela M Finch"

The sweet taste receptor (STR) is a G protein-coupled receptor (GPCR) responsible for mediating cellular responses to sweet stimuli. Early evidence suggests that elements of the STR signaling system are present beyond the tongue in metabolically active tissues, where it may act as an extraoral glucose sensor. This study aimed to delineate expression of the STR in extraoral tissues using publicly available RNA-sequencing repositories.

View Article and Find Full Text PDF

Atherosclerosis predisposes to myriad cardiovascular complications, including myocardial infarction and stroke. Statins have revolutionised cholesterol management but they do not work for all patients, particularly those with familial hypercholesterolaemia (FH). Genome-wide association studies have linked SNPs at orphan G protein-coupled receptor 146 (GPR146) to human atherosclerosis but how GPR146 influences serum cholesterol homeostasis was only recently described.

View Article and Find Full Text PDF

The development of sub-type selective α adrenoceptor ligands has been hampered by the high sequence similarity of the amino acids forming the orthosteric binding pocket of the three α adrenoceptor subtypes, along with other biogenic amine receptors. One possible approach to overcome this issue is to target allosteric sites on the α adrenoceptors. Previous docking studies suggested that one of the quinoline moieties of a bis(4-aminoquinoline), comprising a 9-carbon methylene linker attached via the amine groups, could interact with residues outside of the orthosteric binding site while, simultaneously, the other quinoline moiety bound within the orthosteric site.

View Article and Find Full Text PDF

The class C G protein-coupled sweet taste receptor (STR) is responsible for the perception of sweet-tasting molecules. Considered an obligate heterodimer, it consists of taste 1 receptor 2 and taste 1 receptor 3 subunits. Interest in the STR has steadily grown, especially since its discovery in extraoral tissues hints at a metabolic role for the receptor.

View Article and Find Full Text PDF

A G protein-coupled receptor (GPCR) agonist protein, thaumatin, was site-specifically conjugated at the N- or C-terminus with a fluorophore for visualization of GPCR:agonist interactions. The N-terminus was specifically conjugated using a synthetic 2-pyridinecarboxyaldehyde reagent. The interaction profiles observed for N- and C-terminal conjugates were varied; N-terminal conjugates interacted very weakly with the GPCR of interest, whereas C-terminal conjugates bound to the receptor.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are important targets for development of drugs for the treatment of many diseases. However, crystal structures are available for only a small fraction of these membrane bound proteins. Accurate homology models will provide opportunities for effective drug design targeting GPCRs.

View Article and Find Full Text PDF

The α-adrenergic receptors are targets for a number of cardiovascular and central nervous system conditions, but the current drugs for these receptors lack specificity to be of optimal clinical value. Allosteric modulators offer an alternative mechanism of action to traditional α-adrenergic ligands, yet there is little information describing this drug class at the α-adrenergic receptors. We have identified a series of 9-aminoacridine compounds that demonstrate allosteric modulation of the α- and α-adrenergic receptors.

View Article and Find Full Text PDF

A series of ring-substituted ethyl- and heptyl-linked 4-aminoquinoline dimers were synthesized and evaluated for their affinities at the 3 human α(1)-adrenoceptor (α(1)-AR) subtypes and the human serotonin 5-HT(1A)-receptor (5-HT(1A)-R). We find that the structure-specificity profiles are different for the two series at the α(1)-AR subtypes, which suggests that homobivalent 4-aminoquinolines can be developed with α(1)-AR subtype selectivity. The 8-methyl (8-Me) ethyl-linked analogue has the highest affinity for the α(1A)-AR, 7 nM, and the greatest capacity for discriminating between α(1A)-AR and α(1B)-AR (6-fold), α(1D)-AR (68-fold), and the 5-HT(1A)-R (168-fold).

View Article and Find Full Text PDF

The extracellular loops of the adrenoceptors present a potential therapeutic target in the design of highly selective adrenergic drugs. These regions are less conserved than the orthosteric binding site but have to date not been implicated in activation of adrenoceptors. A previously generated homology model identified an extracellular residue, D191, as a potential regulator of agonist binding.

View Article and Find Full Text PDF

Preterm delivery increases the risk of inadequate systemic blood flow and hypotension, and many preterm infants fail to respond to conventional inotrope treatments. If the profile of cardiac adrenoceptor subtypes in the preterm neonate is different to that at term this may contribute to these clinical problems. This study measured mRNA expression of β1, β2, α1A, α2A and α2B-adrenoceptor subtypes by real time PCR in term (113d), preterm (91d) and preterm piglets (91d) exposed to maternal glucocorticoid treatment.

View Article and Find Full Text PDF

The α1-adrenoceptors (α1-ARs), in particular the α1A-AR subtype, are current therapeutic targets of choice for the treatment of urogenital conditions, such as benign prostatic hyperplasia (BPH). Due to the similarity between the transmembrane domains of the α1-AR subtypes, and the serotonin receptor subtype 1A (5-HT1A-R), currently used α1-AR subtype-selective drugs to treat BPH display considerable off-target affinity for the 5-HT1A-R, leading to side effects. We describe the construction and validation of pharmacophores for 5-HT1A-R agonists and antagonists.

View Article and Find Full Text PDF

α₁-adrenoceptor (α₁-AR) subtype-selective ligands lacking off-target affinity for the 5-HT(1A) receptor (5-HT(1A)-R) will provide therapeutic benefits in the treatment of urogenital conditions such as benign prostatic hyperplasia. In this study we determined the affinity of 4-aminoquinoline and eleven homobivalent 4-aminoquinoline ligands (diquinolines) with alkane linkers of 2-12 atoms (C2-C12) for α(1A), α(1B) and α(1D)-ARs and the 5-HT(1A)-R. These ligands are α(1A)-AR antagonists with nanomolar affinity for α(1A) and α(1B)-ARs.

View Article and Find Full Text PDF

In this study four and five-feature pharmacophores for selective antagonists at each of the three α(1)-adrenoceptor (AR) subtypes were used to identify novel α(1)-AR subtype selective compounds in the National Cancer Institute and Tripos LeadQuest databases. 12 compounds were selected, based on diversity of structure, predicted high affinity and selectivity at the α(1D)- subtype compared to α(1A)- and α(1B)-ARs. 9 out of 12 of the tested compounds displayed affinity at the α(1A) and α(1D) -AR subtypes and 6 displayed affinity at all three α(1)-AR subtypes, no α(1B)-AR selective compounds were identified.

View Article and Find Full Text PDF

Glucocorticoids play a critical role in fetal development, but inappropriate exposure is associated with reduced fetal growth. We investigated cortisol exposure and supply in a porcine model of differential fetal growth. This model compares the smallest fetus of a litter with an average-sized sibling at three stages of gestation.

View Article and Find Full Text PDF

Objective: Myocardial contractility is enhanced in transgenic (TG) mice with cardiac-restricted overexpression of the alpha1A-adrenergic receptors (alpha1A-AR). We tested the hypothesis that this enhanced inotropy protects against dysfunction and remodeling after myocardial infarction (MI).

Methods: We subjected alpha1A-TG and non-TG mice (NTG) to MI and determined changes in left ventricular (LV) function and diastolic dimension (LVDd) by echocardiography prior to and at 1, 3, 7, 12 and 15 weeks thereafter.

View Article and Find Full Text PDF

This Perspective focuses on the alpha(1D)-adrenergic receptor (AR), the often neglected sibling of the alpha(1)-AR family. This neglect is due in part to its poor cell-surface expression. However, it has recently been shown that dimerization of the alpha(1D)-AR with either the alpha(1B)-AR or the beta(2)-AR increases alpha(1D)-AR cell-surface expression, and in this issue of Molecular Pharmacology, Hague et al.

View Article and Find Full Text PDF

The fetus requires an adequate supply of fatty acids for optimum growth and development. It has been hypothesized that reduced activity of enzymes of fatty acid metabolism could contribute to inadequate fetal growth. In a porcine model of differential fetal growth we examined heart and liver fatty acid synthase, delta5-desaturase and delta6-desaturase gene expression and measured hepatic fatty acid profile to assess long-chain polyunsaturated fatty acid status.

View Article and Find Full Text PDF

In response to pressure-overload, cardiac function deteriorates and may even progress to fulminant heart failure and death. Here we questioned if genetic enhancement of left ventricular (LV) contractility protects against pressure-overload. Transgenic (TG) mice with cardiac-restricted overexpression (66-fold) of the alpha(1A)-adrenergic receptor (alpha(1A)-AR) and their non-TG (NTG) littermates, were subjected to transverse aorta constriction (TAC)-induced pressure-overload for 12 weeks.

View Article and Find Full Text PDF

Low birth weight is a major factor in neonatal morbidity and mortality in humans and domestic species and is a predictor of physiological disorders in adulthood. This study utilised the naturally occurring variation in pig fetal size within a uterus to test the hypothesis that placental amino acid transport capability is associated with fetal growth. Leucine uptake by trophoblast vesicles prepared from placentas supplying an average-sized fetus and the smallest fetus in the uterus was assessed.

View Article and Find Full Text PDF