Leishmaniasis is recognized as a serious public health problem in Brazil and around the world. The limited availability of drugs for treatment, added to the diversity of side effects and the emergence of resistant strains, shows the importance of research focused on the development of new molecules, thus contributing to treatments. Therefore, this work aimed to identify leishmanicidal compounds using a peptide dimerization strategy, as well as to understand their mechanisms of action.
View Article and Find Full Text PDFThe expression and release of cysteine proteases by Leishmania spp. and their virulence factors significantly influence the modulation of host immune responses and metabolism, rendering cysteine proteases intriguing targets for drug development. This review article explores the substantial role of cysteine protease B (CPB) in medicinal chemistry from 2001 to 2024, particularly concerning combatting Leishmania parasites.
View Article and Find Full Text PDFLeishmaniasis is a neglected disease that impacts more than one billion people in endemic areas of the globe. Several drawbacks are associated with the currently existing drugs for treatment such as low effectiveness, toxicity, and the emergence of resistant strains that demonstrate the importance of looking for novel therapeutic alternatives. Photodynamic therapy (PDT) is a promising novel alternative for cutaneous leishmaniasis treatment because its topical application avoids potential side effects generally associated with oral/parenteral application.
View Article and Find Full Text PDFThe current treatment of leishmaniasis is based on a few drugs that present several drawbacks, such as high toxicity, difficult administration route, and low efficacy. These disadvantages raise the necessity to develop novel antileishmanial compounds allied with a comprehensive understanding of their mechanisms of action. Here, we elucidate the probable mechanism of action of the antileishmanial binuclear cyclopalladated complex [Pd(dmba)(μ-N)] (CP2) in Leishmania amazonensis.
View Article and Find Full Text PDFLeishmaniasis is a serious and neglected disease that affects 14 million people around the World. The currently available drugs for treatment present several drawbacks such as low efficacy and severe side effects, contributing to patients' low compliance. Photodynamic therapy (PDT) is rising as a promising treatment of cutaneous leishmaniasis, mainly considering its topical administration that circumvents any potential adverse effects commonly related to oral/parenteral administration.
View Article and Find Full Text PDFLeishmaniasis is a group of diseases caused by protozoan parasites from the genus Leishmania. There are estimated 1.3 million new cases annually with a mortality of 20,000-30,000 per year, when patients are left untreated.
View Article and Find Full Text PDFVisceral leishmaniasis (VL) is fatal if left untreated. Infected dogs are important reservoirs of the disease, and thus specific identification of infected animals is very important. Several diagnostic tests have been developed for canine VL (CVL); however, these tests show varied specificity and sensitivity.
View Article and Find Full Text PDFAntimicrob Agents Chemother
August 2017
Leishmaniasis is a disease found throughout the (sub)tropical parts of the world caused by protozoan parasites of the genus. Despite the numerous problems associated with existing treatments, pharmaceutical companies continue to neglect the development of better ones. The high toxicity of current drugs combined with emerging resistance makes the discovery of new therapeutic alternatives urgent.
View Article and Find Full Text PDFChalcones form a class of compounds that belong to the flavonoid family and are widely distributed in plants. Their simple structure and the ease of preparation make chalcones attractive scaffolds for the synthesis of a large number of derivatives enabling the evaluation of the effects of different functional groups on biological activities. In this Letter, we report the successful synthesis of a series of novel prenylated chalcones via Claisen-Schmidt condensation and the evaluation of their effect on the viability of the Trypanosomatidae parasites Leishmania amazonensis, Leishmania infantum and Trypanosoma cruzi.
View Article and Find Full Text PDFTrypanosoma brucei and Trypanosoma cruzi are the etiologic agents of sleeping sickness and Chagas disease, respectively, two of the 17 preventable tropical infectious diseases (NTD) which have been neglected by governments and organizations working in the health sector, as well as pharmaceutical industries. High toxicity and resistance are problems of the conventional drugs employed against trypanosomiasis, hence the need for the development of new drugs with trypanocidal activity. In this work we have evaluated the trypanocidal activity of a series of N1,N2-dibenzylethane-1,2-diamine hydrochlorides (benzyl diamines) and N1-benzyl,N2-methyferrocenylethane-1,2-diamine hydrochlorides (ferrocenyl diamines) against T.
View Article and Find Full Text PDF