Publications by authors named "Angela Karimpour-Ghahnavieh"

The oncoprotein GOLPH3 (Golgi phosphoprotein 3) is an evolutionarily conserved phosphatidylinositol 4-phosphate effector, mainly localized to the Golgi apparatus, where it supports organelle architecture and vesicular trafficking. Overexpression of human GOLPH3 correlates with poor prognosis in several cancer types and is associated with enhanced signaling downstream of mTOR (mechanistic target of rapamycin). However, the molecular link between GOLPH3 and mTOR remains elusive.

View Article and Find Full Text PDF

Golgi phosphoprotein 3 (GOLPH3) is a highly conserved peripheral membrane protein localized to the Golgi apparatus and the cytosol. GOLPH3 binding to Golgi membranes depends on phosphatidylinositol 4-phosphate [PI(4)P] and regulates Golgi architecture and vesicle trafficking. GOLPH3 overexpression has been correlated with poor prognosis in several cancers, but the molecular mechanisms that link GOLPH3 to malignant transformation are poorly understood.

View Article and Find Full Text PDF

Glycosylation is the most common post-translational modification of proteins; it mediates their correct folding and stability, as well as their transport through the secretory transport. Changes in and linked glycans have been associated with multiple pathological conditions including congenital disorders of glycosylation, inflammatory diseases and cancer. Glycoprotein glycosylation at the Golgi involves the coordinated action of hundreds of glycosyltransferases and glycosidases, which are maintained at the correct location through retrograde vesicle trafficking between Golgi cisternae.

View Article and Find Full Text PDF

In animal cell cytokinesis, interaction of non-muscle myosin II (NMII) with F-actin provides the dominant force for pinching the mother cell into two daughters. Here we demonstrate that () is a missense allele of , which encodes the Myosin heavy chain. Mutation of impairs binding of Zipper protein to the regulatory light chain Spaghetti squash (Sqh).

View Article and Find Full Text PDF

Golgi phosphoprotein 3 (GOLPH3), a Phosphatidylinositol 4-Phosphate [PI(4)P] effector at the Golgi, is required for Golgi ribbon structure maintenance, vesicle trafficking and Golgi glycosylation. GOLPH3 has been validated as an oncoprotein through combining integrative genomics with clinopathological and functional analyses. It is frequently amplified in several solid tumor types including melanoma, lung cancer, breast cancer, glioma, and colorectal cancer.

View Article and Find Full Text PDF

During the extended prophase of gametogenesis, spermatocytes undergo robust gene transcription and store many transcripts in the cytoplasm in a repressed state, until translational activation of select mRNAs in later steps of spermatogenesis. Here, we characterize the Doublefault (Dbf) protein as a C2H2 zinc-finger protein, primarily expressed in testes, that is required for normal meiotic division and spermiogenesis. Loss of Dbf causes premature centriole disengagement and affects spindle structure, chromosome segregation and cytokinesis.

View Article and Find Full Text PDF

Protein glycosylation, the enzymatic addition of N-linked or O-linked glycans to proteins, serves crucial functions in animal cells and requires the action of glycosyltransferases, glycosidases and nucleotide-sugar transporters, localized in the endoplasmic reticulum and Golgi apparatus. Congenital Disorders of Glycosylation (CDGs) comprise a family of multisystemic diseases caused by mutations in genes encoding proteins involved in glycosylation pathways. CDGs are classified into two large groups.

View Article and Find Full Text PDF

Congenital disorders of glycosylation (CDG) comprise a family of human multisystemic diseases caused by recessive mutations in genes required for protein N-glycosylation. More than 100 distinct forms of CDGs have been identified and most of them cause severe neurological impairment. The Conserved Oligomeric Golgi (COG) complex mediates tethering of vesicles carrying glycosylation enzymes across the Golgi cisternae.

View Article and Find Full Text PDF