MicroRNA-150 (miR-150) is conserved between rodents and humans, is significantly downregulated during heart failure (HF), and correlates with patient outcomes. We previously reported that miR-150 is protective during myocardial infarction (MI) in part by decreasing cardiomyocyte (CM) apoptosis and that proapoptotic small proline-rich protein 1a (Sprr1a) is a direct CM target of miR-150. We also showed that Sprr1a knockdown in mice improves cardiac dysfunction and fibrosis post-MI and that Sprr1a is upregulated in pathological mouse cardiac fibroblasts (CFs) from ischemic myocardium.
View Article and Find Full Text PDFNoncoding RNAs (ncRNAs) play fundamental roles in cardiac development and cardiovascular diseases (CVDs), which are a major cause of morbidity and mortality. With advances in RNA sequencing technology, the focus of recent research has transitioned from studies of specific candidates to whole transcriptome analyses. Thanks to these types of studies, new ncRNAs have been identified for their implication in cardiac development and CVDs.
View Article and Find Full Text PDFHere, we report a one-pot solvothermal method for the development of magnetically recoverable catalysts with Ru or Ag nanoparticles (NPs) capped by chitosan (CS), a derivative of natural chitin. The formation of iron oxide NPs was carried out in situ in the presence of CS and iron acetylacetonate in boiling triethyleneglycol (TEG) due to CS solubilization in warm TEG. Coordination with Ru or Ag species and the NP formation take place in the same reaction solution, eliminating intermediate steps.
View Article and Find Full Text PDFHere, we report the structures and properties of biocatalysts based on glucose oxidase (GOx) macromolecules immobilized on the mesoporous zirconia surface with or without magnetic iron oxide nanoparticles (IONPs) in zirconia pores. Properties of these biocatalysts were studied in oxidation of d-glucose to d-gluconic acid at a wide range of pH and temperatures. We demonstrate that the calcination temperature (300, 400, or 600 °C) of zirconia determines its structure, with crystalline materials obtained at 400 and 600 °C.
View Article and Find Full Text PDFHere, for the first time, we developed a catalytic composite by forming a thin layer of a cross-linked hyperbranched pyridylphenylene polymer (PPP) on the surface of mesoporous magnetic silica (FeO-SiO, MS) followed by complexation with Pd species. The interaction of Pd acetate (PdAc) with pyridine units of the polymer results in the formation of Pd complexes which are evenly distributed through the PPP layer. The MS-PPP-PdAc catalyst was tested in the Suzuki-Miyaura cross-coupling reaction with four different para-Br-substituted arenes, demonstrating enhanced catalytic properties for substrates containing electron withdrawing groups, and especially, for 4-bromobenzaldehyde.
View Article and Find Full Text PDF