Publications by authors named "Angela Jedlovszky-Hajdu"

In this research, we applied electrospinning to create a two-component biodegradable polymeric scaffold containing polysuccinimide (PSI) and antibacterial salts. Antibacterial agents for therapeutical purposes mostly contain silver ions which are associated with high environmental impact and, in some cases, may cause undesired immune reactions. In our work, we prepared nanofibrous systems containing antibacterial and tissue-regenerating salts of zinc acetate or strontium nitrate in different concentrations, whose structures may be suitable for developing biomedical wound dressing systems in the future.

View Article and Find Full Text PDF

Even though electrospinning is getting more and more attention, the preparation of 3D nanofibrous meshes is still a big challenge that limits the application of electrospun materials, especially in tissue engineering. To overcome this problem, several solutions are introduced but most of them focus on the postprocessing of the electrospun meshes. This paper presents a straightforward novel method that utilizes the joint effect of the addition of CaCl and the relative environmental humidity (RH), which can induce the random 3D formation of polysuccinimide (PSI) electrospun fibers with different such as wrinkled or ribbon-like structures.

View Article and Find Full Text PDF

The surface affinity of tetramethylammonium iodide (TMAI) in aqueous solutions is investigated by surface tension measurements and molecular dynamics computer simulations. Experiments, performed in the entire composition range of solubility using the pendant drop method with two different setups, clearly reveal that TMAI is a weakly capillary active salt. Computer simulations performed with the AMBER force field reproduce the experimental data very well, while two other major force fields (i.

View Article and Find Full Text PDF

Background: Recent studies put under scrutiny the prevailing hand hygiene guidelines, which incorporate quantitative parameters regarding handrub volume and hand size. Understanding the criticality of complete (i.e.

View Article and Find Full Text PDF

Poly(vinyl-alcohol) hydrogels have already been successfully utilised as drug carrier systems and tissue engineering scaffolds. However, lacking mechanical strength and suturability hinders any prospects for clinical and surgical applications. The objective of this work was to fabricate mechanically robust PVA membranes, which could also withstand surgical manipulation and suturing.

View Article and Find Full Text PDF

Biocompatible nanofibrous systems made by electrospinning have been studied widely for pharmaceutical applications since they have a high specific surface and the capability to make the entrapped drug molecule amorphous, which increases bioavailability. By covalently conjugating drugs onto polymers, the degradation of the drug as well as the fast clearance from the circulation can be avoided. Although covalent polymer-drug conjugates have a lot of advantages, there is a lack of research focusing on their nano-formulation by electrospinning.

View Article and Find Full Text PDF

When exposed to an alternating magnetic field, superparamagnetic nanoparticles can elicit the required hyperthermic effect while also being excellent magnetic resonance imaging (MRI) contrast agents. Their main drawback is that they diffuse out of the area of interest in one or two days, thus preventing a continuous application during the typical several-cycle multi-week treatment. To solve this issue, our aim was to synthesise an implantable, biodegradable membrane infused with magnetite that enabled long-term treatment while having adequate MRI contrast and hyperthermic capabilities.

View Article and Find Full Text PDF

Several types of promising cell-based therapies for tissue regeneration have been developing worldwide. However, for successful therapeutical application of cells in this field, appropriate scaffolds are also required. Recently, the research for suitable scaffolds has been focusing on polymer hydrogels due to their similarity to the extracellular matrix.

View Article and Find Full Text PDF

Hernia is a defect of the abdominal wall. Treatment is principally surgical mesh implantation. Non-degradable surgical meshes produce numerous complications and side-effects such as inflammatory response, mesh migration and chronic pain.

View Article and Find Full Text PDF

This paper focuses on preliminary in vitro and in vivo testing of new bivalent folate-targeted PEGylated doxorubicin (DOX) made by modular chemo-enzymatic processes (FA-dPEG-DOX). A unique feature is the use of monodisperse PEG (dPEG). The modular approach with enzyme catalysis ensures exclusive γ-conjugation of folic acid, full conversion and selectivity, and no metal catalyst residues.

View Article and Find Full Text PDF

This paper presents the results of the first part of testing a novel electrospun fiber mat based on a unique macromolecule: polyisobutylene (PIB). A PIB-based compound containing zinc oxide (ZnO) was electrospun into self-supporting mats of 203.75 and 295.

View Article and Find Full Text PDF

In this work two types of biodegradable polysuccinimide-based, electrospun fibrous membranes are presented. One contains disulfide bonds exhibiting a shorter (3 days) in vivo biodegradation time, while the other one has alkyl crosslinks and a longer biodegradation time (more than 7 days). According to the mechanical measurements, the tensile strength of the membranes is comparable to those of soft the connective tissues and visceral tissues.

View Article and Find Full Text PDF

This study investigated cell viability in the presence of allylamine-modified and plasma-treated electrospun polysuccinimide fiber mats (PSI-AAmp). Low pressure non-equilibrium plasma was used for crosslinking the PSI-AAm. Comparison of FTIR and XPS analyses demonstrated that crosslinking occurred on the surface of the samples.

View Article and Find Full Text PDF

Polymer hydrogels are ideal scaffolds for both tissue engineering and drug delivery. A great advantage of poly(amino acid)-based hydrogels is their high similarity to natural proteins. However, their expensive and complicated synthesis often limits their application.

View Article and Find Full Text PDF

Cell-based tissue reconstruction is an important field of regenerative medicine. Stem and progenitor cells derived from tooth-associated tissues have strong regeneration potential. However, their in vivo application requires the development of novel scaffolds that will provide a suitable three-dimensional (3D) environment allowing not only the survival of the cells but eliciting their proliferation and differentiation.

View Article and Find Full Text PDF

Electrospinning is a well-known technique for the preparation of scaffolds for biomedical applications. In this work, a continuous electrospinning method for gel fiber preparation is presented without a spinning window. As proof of concept, the preparation of poly(aspartic acid)-based hydrogel fibers and their properties are described by using poly(succinimide) as shell polymer and 2,2,4(2,4,4)-trimethyl-1,6-hexanediamine as cross-linker in the core of the nozzle.

View Article and Find Full Text PDF

Development of novel biodegradable and biocompatible scaffold materials with optimal characteristics is important for both preclinical and clinical applications. The aim of the present study was to analyze the biodegradability of poly(aspartic acid)-based hydrogels, and to test their usability as scaffolds for MG-63 osteoblast-like cells. Poly(aspartic acid) was fabricated from poly(succinimide) and hydrogels were prepared using natural amines as cross-linkers (diaminobutane and cystamine).

View Article and Find Full Text PDF

Superparamagnetic iron oxide nanoparticles (SPIONs) have proved their use in many biomedical applications, such as drug delivery, hyperthermia, and MRI (magnetic resonance imaging) contrast agents. Due to their instability in fluids, several surface coatings have been used to both stabilize and tune the properties of these nanoparticles (NPs) according to their applications. These coatings will strongly modify their surface properties and influence their interaction with the environment proteins in a relevant biological medium with a clear impact on their function.

View Article and Find Full Text PDF