Publications by authors named "Angela J Sanchez"

During the Ebola virus outbreak of 2013-2016, the Viral Special Pathogens Branch field laboratory in Sierra Leone tested approximately 26 000 specimens between August 2014 and October 2015. Analysis of the B2M endogenous control Ct values showed its utility in monitoring specimen quality, comparing results with different specimen types, and interpretation of results. For live patients, blood is the most sensitive specimen type and oral swabs have little diagnostic utility.

View Article and Find Full Text PDF

In August 2014, the Viral Special Pathogens Branch of the US Centers for Disease Control and Prevention established a field laboratory in Sierra Leone in response to the ongoing Ebola virus outbreak. Through March 2015, this laboratory tested >12 000 specimens from throughout Sierra Leone. We describe the organization and procedures of the laboratory located in Bo, Sierra Leone.

View Article and Find Full Text PDF

Hantavirus pulmonary syndrome (HPS) is caused by an infection with viruses of the genus Hantavirus in the western hemisphere. Rodent hosts of hantaviruses are present throughout the United States. In July 2004, two HPS case-patients were identified in Randolph County, WV: a wildlife science graduate student working locally and a Randolph County resident.

View Article and Find Full Text PDF

The mature Gn glycoprotein of Crimean Congo hemorrhagic fever (CCHF) virus contains two predicted glycosylation sites (557N and 755N). Of these, N-glycans are added only at 557N, as evidenced by abrogation of Gn-glycosylation by mutation of 557N but not 755N site. Mutational block of Gn-glycosylation at 557N did not significantly affect Gn proteolytic processing but did result in mislocalization and retention of Gn and other proteins synthesized from the virus M segment ORF (GP160, GP85, GP38 and Gc) in the endoplasmic reticulum.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever virus (genus Nairovirus, family Bunyaviridae) genome M segment encodes an unusually large (in comparison to members of other genera) polyprotein (1,684 amino acids in length) containing the two major structural glycoproteins, Gn and Gc, that are posttranslationally processed from precursors PreGn and PreGc by SKI-1 and SKI-1-like proteases, respectively. The characteristics of the N-terminal 519 amino acids located upstream of the mature Gn are unknown. A highly conserved furin/proprotein convertase (PC) cleavage site motif (RSKR247) is located between the variable N-terminal region that is predicted to have mucin-like properties and the rest of PreGn.

View Article and Find Full Text PDF

Peripheral blood samples obtained from patients during an outbreak of Ebola virus (Sudan species) disease in Uganda in 2000 were used to phenotype peripheral blood mononuclear cells (PBMC), quantitate gene expression, measure antigenemia, and determine nitric oxide levels. It was determined that as the severity of disease increased in infected patients, there was a corresponding increase in antigenemia and leukopenia. Blood smears revealed thrombocytopenia, a left shift in neutrophils (in some cases degenerating), and atypical lymphocytes.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne member of the genus Nairovirus, family Bunyaviridae. The mature virus glycoproteins, Gn and Gc (previously referred to as G2 and G1), are generated by proteolytic cleavage from precursor proteins. The amino termini of Gn and Gc are immediately preceded by tetrapeptides RRLL and RKPL, respectively, leading to the hypothesis that SKI-1 or related proteases may be involved (A.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever (CCHF) virus is the cause of an important tick-borne disease of humans throughout regions of Africa, Europe, and Asia. Like other members of the genus Nairovirus, family Bunyaviridae, the CCHF virus M genome RNA segment encodes the virus glycoproteins. Sequence analysis of the CCHF virus (Matin strain) M RNA segment revealed one major open reading frame that potentially encodes a precursor polyprotein 1,689 amino acids (aa) in length.

View Article and Find Full Text PDF