Publications by authors named "Angela J Lowrey"

As the second leading cause of death in the United States, cancer has a considerable impact on society, and one cellular process that is commonly dysregulated in many cancers is the post-translational modification of proteins by the Small Ubiquitin-like Modifier (SUMO; sumoylation). We documented that sumoylation processes are up-regulated in lymphoma tissues in the presence of Latent Membrane Protein-1 (LMP1), the principal oncoprotein of Epstein-Barr virus (EBV). LMP1-mediated dysregulation of cellular sumoylation processes contributes to oncogenesis, modulates innate immune responses, and aids the maintenance of viral latency.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) latent membrane protein-1 (LMP1) activates numerous signal transduction pathways using its C-terminal activating regions. We reported that LMP1 increased global levels of sumoylated proteins, which aided the oncogenic nature of LMP1. Because increased protein sumoylation is detected in numerous cancers, we wanted to elucidate additional mechanisms by which LMP1 modulates the sumoylation machinery.

View Article and Find Full Text PDF

Cellular sumoylation processes are proposed targets for anti-viral and anti-cancer therapies. We reported that Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) dysregulates cellular sumoylation processes, contributing to its oncogenic potential in EBV-associated malignancies. Ginkgolic acid and anacardic acid, known inhibitors of sumoylation, inhibit LMP1-induced protein sumoylation; however, both drugs have adverse effects in hosts.

View Article and Find Full Text PDF

Viruses exploit various cellular processes for their own benefit, including counteracting anti-viral responses and regulating viral replication and propagation. In the past 20 years, protein sumoylation has emerged as an important post-translational modification that is manipulated by viruses to modulate anti-viral responses, viral replication, and viral pathogenesis. The process of sumoylation is a multi-step cascade where a small ubiquitin-like modifier (SUMO) is covalently attached to a conserved ΨKxD/E motif within a target protein, altering the function of the modified protein.

View Article and Find Full Text PDF

Background: Autosomal dominant optic atrophy (ADOA), a form of progressive bilateral blindness due to loss of retinal ganglion cells and optic nerve deterioration, arises predominantly from mutations in the nuclear gene for the mitochondrial GTPase, OPA1. OPA1 localizes to mitochondrial cristae in the inner membrane where electron transport chain complexes are enriched. While OPA1 has been characterized for its role in mitochondrial cristae structure and organelle fusion, possible effects of OPA1 on mitochondrial function have not been determined.

View Article and Find Full Text PDF