The risk of foodborne disease outbreaks increases when the pathogenic bacteria are able to form biofilms, and this presents a major threat to public health. An emerging non-thermal cold plasma (CP) technology has proven a highly effective method for decontaminating meats and their products and extended their shelf life. CP treatments have ability to reduce microbial load and, biofilm formation with minimal change of color, pH value, and lipid oxidation of various meat and meat products.
View Article and Find Full Text PDFBiofouling
November 2023
is a food-borne microorganism that is also a zoonotic bacterial hazard in the food sector. This study determined how well a mixed culture of Kentucky formed biofilms on plastic (PLA), silicon rubber (SR), rubber gloves (RG), chicken skin and eggshell surfaces. interactions between the histone deacetylase inhibitor-vorinostat (SAHA)-and serotype Kentucky were examined utilizing biofilms.
View Article and Find Full Text PDFSalmonella enterica and Shiga toxin-producing (or verotoxin-producing) Escherichia coli are major foodborne pathogens, posing substantial food safety risks. Due to the negative effects of chemical treatment against foodborne pathogens, the application of enzyme-based techniques is currently receiving great attention. Here, we evaluated the inhibitory properties of Flavourzyme, a commercial peptidase, against these two foodborne pathogens.
View Article and Find Full Text PDFSalmonella is a foodborne pathogen and an emerging zoonotic bacterial threat in the food industry. The aim of this study was to evaluate the biofilm formation by a cocktail culture of 3 wild isolates of Salmonella enterica serotype Kentucky on plastic (PLA), silicon rubber (SR), and chicken skin surfaces under various temperatures (4, 10, 25, 37, and 42°C) and pH values (4.0, 5.
View Article and Find Full Text PDFSalmonella is one of the common foodborne bacteria, causing 80.3 million illnesses every year worldwide. This study was conducted to isolate and identify Salmonella enterica serovars from poultry samples responsible for causing foodborne poisoning in the Mississippi area, United States.
View Article and Find Full Text PDFFood contamination is a major public health concern, with Salmonella Typhimurium, Escherichia coli, and Pseudomonas aeruginosa being the prominent causal agents. They often produce resistant shields in food through biofilm formation and are difficult to remove from food-contact surfaces using conventional cleaning agents. In the current study, we investigated the efficacy of flavourzyme, an industrial peptidase, in biofilm removal from ultra-high molecular weight polyethylene (UHMWPE) and rubber surfaces and compared the corresponding efficacies with those of the commonly used DNase I.
View Article and Find Full Text PDFThe objective of this study was to investigate the antibacterial and antibiofilm activity of eugenol against V. parahaemolyticus planktonic and biofilm cells and the involved mechanisms as well. Atime-kill assay, a biofilm formation assay on the surface of crab shells, an assay to determine the reduction of virulence using eugenol at different concentrations, energy-filtered transmission electron microscope (EF-TEM), field emission scanning electron microscopy (FE-SEM), confocal laser scanning microscope (CLSM) and high-performance liquid chromatography (HPLC) were performed to evaluate the antibacterial and antibiofilm activity of eugenol.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
November 2018
Food poisoning and foodborne diseases are a growing public health concern worldwide. Approximately 30 known and many unknown pathogens are the main culprits for these conditions. Biofilms are a heterogeneous living-form of pathogens and are considered a safe haven for their pathogenicity.
View Article and Find Full Text PDFThe aim of this study was to determine the effect of salinity and age of cultures on quorum sensing, exoprotease production, and biofilm formation by Aeromonas hydrophila on stainless steel (SS) and crab shell as substrates. Biofilm formation was assessed at various salinities, from fresh (0%) to saline water (3.0%).
View Article and Find Full Text PDF