Brain Behav Evol
November 2024
Background: Glia represent a major cell population of the nervous system, and they take part in virtually any process sustaining the development, the functioning, and the pathology of the nervous system. Glial cells diversified significantly during evolution and distinct signals have been adopted to initiate glial development in mammals as compared to flies. In the invertebrate model Drosophila melanogaster, the transcription factor Gcm is necessary and sufficient to generate glial cells.
View Article and Find Full Text PDFMacrophages constitute the first defense line against the non-self, but their ability to remodel their environment in organ development/homeostasis is starting to be appreciated. Early-wave macrophages (EMs), produced from hematopoietic stem cell (HSC)-independent progenitors, seed the mammalian fetal liver niche wherein HSCs expand and differentiate. The involvement of niche defects in myeloid malignancies led us to identify the cues controlling HSCs.
View Article and Find Full Text PDFHemocytes, the myeloid-like immune cells of , fulfill a variety of functions that are not completely understood, ranging from phagocytosis to transduction of inflammatory signals. We here show that downregulating the hemocyte-specific Glial cell deficient/Glial cell missing (Glide/Gcm) transcription factor enhances the inflammatory response to the constitutive activation of the Toll pathway. This correlates with lower levels of glutathione S-transferase, suggesting an implication of Glide/Gcm in reactive oxygen species (ROS) signaling and calling for a widespread anti-inflammatory potential of Glide/Gcm.
View Article and Find Full Text PDFTumors constantly interact with their microenvironment. Here, we present data on a Notch-induced neural stem cell (NSC) tumor in Drosophila, which can be immortalized by serial transplantation in adult hosts. This tumor arises in the larva by virtue of the ability of Notch to suppress early differentiation-promoting factors in NSC progeny.
View Article and Find Full Text PDFInnate immunity is an ancestral process that can induce pro- and anti-inflammatory states. A major challenge is to characterize transcriptional cascades that modulate the response to inflammation. Since the Drosophila glial cells missing (Gcm) transcription factor has an anti-inflammatory role, we explored its regulation and evolutionary conservation.
View Article and Find Full Text PDFThe catalog of the immune cells was until recently limited to three major cell types, based on morphology, function and few molecular markers. Three recent single cell studies highlight the presence of several subgroups, revealing a large diversity in the molecular signature of the larval immune cells. Since these studies rely on somewhat different experimental and analytical approaches, we here compare the datasets and identify eight common, robust subgroups associated to distinct functions such as proliferation, immune response, phagocytosis or secretion.
View Article and Find Full Text PDFThe development and the maintenance of an efficient immune system represents a considerable metabolic investment for the organism. Ramond et al. have characterized a new molecular and cellular pathway, inhibiting the immune system in poor diet conditions in the Drosophila larva.
View Article and Find Full Text PDFSocial impairment is frequently associated with mitochondrial dysfunction and altered neurotransmission. Although mitochondrial function is crucial for brain homeostasis, it remains unknown whether mitochondrial disruption contributes to social behavioral deficits. Here, we show that Drosophila mutants in the homolog of the human CYFIP1, a gene linked to autism and schizophrenia, exhibit mitochondrial hyperactivity and altered group behavior.
View Article and Find Full Text PDFImmune cells provide defense against non-self and have recently been shown to also play key roles in diverse processes such as development, metabolism, and tumor progression. The heterogeneity of Drosophila immune cells (hemocytes) remains an open question. Using bulk RNA sequencing, we find that the hemocytes display distinct features in the embryo, a closed and rapidly developing system, compared to the larva, which is exposed to environmental and metabolic challenges.
View Article and Find Full Text PDFSynaptic structure and activity are sensitive to environmental alterations. Modulation of synaptic morphology and function is often induced by signals from glia. However, the process by which glia mediate synaptic responses to environmental perturbations such as hypoxia remains unknown.
View Article and Find Full Text PDFThe fruitfly has been extensively used as a genetic model for the maintenance of nervous system's functions. Glial cells are of utmost importance in regulating the neuronal functions in the adult organism and in the progression of neurological pathologies. Through a microRNA-based screen in adult glia, we uncovered the essential role of a major glia developmental determinant, , in the adult fly.
View Article and Find Full Text PDFFragile-X syndrome is one of the most common forms of inherited mental retardation and autistic behaviors. The reduction/absence of the functional FMRP protein, coded by the X-linked gene in humans, is responsible for the syndrome. Patients exhibit a variety of symptoms predominantly linked to the function of FMRP protein in the nervous system like autistic behavior and mild-to-severe intellectual disability.
View Article and Find Full Text PDFDespite their different origins, glia and hemocytes are related cell populations that provide an immune function. hemocytes patrol the body cavity and act as macrophages outside the nervous system, whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development.
View Article and Find Full Text PDFThe oncoprotein BCR-ABL1 triggers chronic myeloid leukemia. It is clear that the disease relies on constitutive BCR-ABL1 kinase activity, but not all the interactors and regulators of the oncoprotein are known. We describe and validate a leukemia model based on inducible human BCR-ABL1 expression controlled by tissue-specific promoters.
View Article and Find Full Text PDFDespite their great importance for biomedical research, the intricate network of relationships between macro- and microglia, in terms of development, function and evolution, remains poorly understood. Drawing inspiration from the recent meeting "Of Glia and Microglia", held at the University of Strasbourg in December 2017, we here discuss the outstanding questions in the seemingly disparate fields of glial development, physiology and evolution, and also provide suggestions for how the field should move forward.
View Article and Find Full Text PDFRecent lineage tracing analyses have significantly improved our understanding of immune system development and highlighted the importance of the different hematopoietic waves. The current challenge is to understand whether these waves interact and whether this affects the function of the immune system. Here we report a molecular pathway regulating the immune response and involving the communication between embryonic and larval hematopoietic waves in .
View Article and Find Full Text PDFCytoplasmic FMRP interacting protein 1 () is a candidate gene for intellectual disability (ID), autism, schizophrenia and epilepsy. It is a member of a family of proteins that is highly conserved during evolution, sharing high homology with its homolog, dCYFIP. CYFIP1 interacts with the Fragile X mental retardation protein (FMRP, encoded by the gene), whose absence causes Fragile X syndrome, and with the translation initiation factor eIF4E.
View Article and Find Full Text PDFNR5A1 is essential for the development and for the function of steroid producing glands of the reproductive system. Moreover, its misregulation is associated with endometriosis, which is the first cause of infertility in women. Hr39, the Drosophila ortholog of NR5A1, is expressed and required in the secretory cells of the spermatheca, the female exocrine gland that ensures fertility by secreting substances that attract and capacitate the spermatozoids.
View Article and Find Full Text PDFCollective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing wing.
View Article and Find Full Text PDFThe efficient treatment of hematological malignancies as Acute Myeloid Leukemia, myelofibrosis and Chronic Myeloid Leukemia, requires the elimination of cancer-initiating cells and the prevention of disease relapse through targeting pathways that stimulate generation and maintenance of these cells. In mammals, inhibition of Smoothened, the key mediator of the Hedgehog signaling pathway, reduces Chronic Myeloid Leukemia progression and propagation. These findings make Smo a candidate target to inhibit maintenance of leukemia-initiating cells.
View Article and Find Full Text PDFMaster genes are known to induce the differentiation of a multipotent cell into a specific cell type. These molecules are often transcription factors that switch on the regulatory cascade that triggers cell specification. Gcm was first described as the master gene of the glial fate in Drosophila as it induces the differentiation of neuroblasts into glia in the developing nervous system.
View Article and Find Full Text PDFAubergine is an RNA-binding protein of the Piwi clade, functioning in germline in the piRNA pathway that silences transposons and repetitive sequences. Several mutations of this gene exist, but they mostly result in truncated proteins or correspond to mutations that also affect neighboring genes. We have generated complete aubergine knock-out mutants that do not disrupt the neighboring genes.
View Article and Find Full Text PDFUltraviolet (UV) radiation can produce biological damage, leading the cell to apoptosis by the p53 pathway. This study evaluated some molecular markers of the apoptosis pathway induced by UVA, UVB and UVA+ UVB (Solar Simulator, SIM) in environmental doses, during five consecutive days of exposure, in the brain of the crab Ucides cordatus. We evaluated the central nervous system (CNS) by immunoblotting the content of proteins p53, p21, phosphorylated AKT, BDNF, GDNF, activated caspase-3 (C3) and phosphohistone H3 (PH3); and by immunohistochemical tests of the cells labeled for PH3 and C3.
View Article and Find Full Text PDFHigh-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs.
View Article and Find Full Text PDF