Synthetic insecticides heavily applied to manage agricultural pests are highly hazardous to the environment and non-target organisms. Their overuse through repeated treatments in smallholder farming communities is frequent. Botanical biopesticides are ideal for sustainable pest management in agricultural environments by keeping synthetic insecticide use at a minimum.
View Article and Find Full Text PDFBackground/objectives: Increasing dietary diversity is a viable strategy for addressing micronutrient malnutrition in women of childbearing age (WCA) from low-income countries. Recently, it has been demonstrated that some indigenous vegetables (IV) with high nutrient density may help to ameliorate micronutrient's intake. The Minimum Dietary Diversity index for Women (MDD-W) could be considered as a proxy to describe one important dimension of women's diet quality.
View Article and Find Full Text PDFCommon bean () is an important food and cash crop in many countries. Bean crop yields in sub-Saharan Africa are on average 50% lower than the global average, which is largely due to severe problems with pests and diseases as well as poor soil fertility exacerbated by low-input smallholder production systems. Recent on-farm research in eastern Africa has shown that commonly available plants with pesticidal properties can successfully manage arthropod pests.
View Article and Find Full Text PDFis a plant species chemically characterized by the presence of entomotoxic rotenoids and used widely across Africa as a botanical pesticide. Phytochemical analysis was conducted to establish the presence and abundance of the bioactive principles in this species across three countries in East Africa: Tanzania, Kenya, and Malawi Analysis of methanolic extracts of foliar parts of revealed the occurrence of two distinct chemotypes that were separated by the presence of rotenoids in one, and flavanones and flavones that are not bioactive against insects on the other. Specifically, chemotype 1 contained deguelin as the major rotenoid along with tephrosin, and rotenone as a minor component, while these compounds were absent from chemotype 2, which contained previously reported flavanones and flavones including obovatin-3--methylether.
View Article and Find Full Text PDFIn the fight against arthropod crop pests using plant secondary metabolites, most research has focussed on the identification of bioactive molecules. Several hundred candidate plant species and compounds are now known to have pesticidal properties against a range of arthropod pest species. Despite this growing body of research, few natural products are commercialized for pest management whilst on-farm use of existing botanically-based pesticides remains a small, but growing, component of crop protection practice.
View Article and Find Full Text PDF