Publications by authors named "Angela DeAlmeida"

The protective effect of heme oxygenase-1 (HO-1) expression in cardiovascular disease has been previously demonstrated using transgenic animal models in which HO-1 is constitutively overexpressed in the heart. However, the temporal requirements for protection by HO-1 induction relative to injury have not been investigated, but are essential to employ HO-1 as a therapeutic strategy in human cardiovascular disease states. Therefore, we generated mice with cardiac-specific, tamoxifen (TAM)-inducible overexpression of a human HO-1 (hHO-1) transgene (myosin heavy chain (MHC)-HO-1 mice) by breeding mice with cardiac-specific expression of a TAM-inducible Cre recombinase (MHC-Cre mice), with mice containing an hHO-1 transgene preceded by a floxed-stop signal.

View Article and Find Full Text PDF

Rationale: Increased activity of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) is thought to promote heart failure (HF) progression. However, the importance of CaMKII phosphorylation of ryanodine receptors (RyR2) in HF development and associated diastolic sarcoplasmic reticulum Ca(2+) leak is unclear.

Objective: Determine the role of CaMKII phosphorylation of RyR2 in patients and mice with nonischemic and ischemic forms of HF.

View Article and Find Full Text PDF

Transverse aortic constriction (TAC) in the mouse is a commonly used experimental model for pressure overload-induced cardiac hypertrophy and heart failure. TAC initially leads to compensated hypertrophy of the heart, which often is associated with a temporary enhancement of cardiac contractility. Over time, however, the response to the chronic hemodynamic overload becomes maladaptive, resulting in cardiac dilatation and heart failure.

View Article and Find Full Text PDF

The developing heart increases its mass predominantly by increasing the number of contained cells through proliferation. We hypothesized that addition of fibroblast growth factor-2, a factor previously shown to stimulate division of the embryonic myocytes, to the left ventricular myocardium in an experimental model of left heart hypoplasia created in the chicken would attenuate phenotypic severity by increasing cellular proliferation. We have established an effective mode of delivery of fibroblast growth factor-2 to the chick embryonic left ventricular myocardium by using adenovirus vectors, which was more efficient and better tolerated than direct injection of recombinant fibroblast growth factor-2 protein.

View Article and Find Full Text PDF

The chick embryo has long been a favorite model system for morphologic and physiologic studies of the developing heart, largely because of its easy visualization and amenability to experimental manipulations. However, this advantage is diminished after 5 days of incubation, when rapidly growing chorioallantoic membranes reduce visibility of the embryo. Using high-frequency ultrasound, we show that chick embryonic cardiovascular structures can be readily visualized throughout the period of Stages 9-39.

View Article and Find Full Text PDF

Hemodynamics influence cardiac development, and alterations in blood flow may lead to impaired cardiac growth and malformations. The developing myocardium adapts to augmented workload by increasing cell number (hyperplasia). The aim of this study was to determine the influence of alterations in ventricular preload on fetal myocyte proliferation by manipulation of intracardiac shunting at the atrial level.

View Article and Find Full Text PDF

The specialized conduction tissue network mediates coordinated propagation of electrical activity through the adult vertebrate heart. Following activation of the atria, the activation wave is slowed down in the atrioventricular canal or node, then spreads rapidly into the left and right ventricles via the His-Purkinje system (HPS). This results in the ventricle being activated from the apex toward the base and is thought to represent HPS function.

View Article and Find Full Text PDF

We review here the evolution and development of the earliest components of the cardiac pacemaking and conduction system (PCS) and the turnover or persistence of such cells into old age in the adult vertebrate heart. Heart rate is paced by upstream foci of cardiac muscle near the future sinoatrial junction even before contraction begins. As the tubular heart loops, directional blood flow is maintained through coordinated sphincter function in the forming atrioventricular (AV) canal and outflow segments.

View Article and Find Full Text PDF

Patterns of DNA synthesis in the developing mouse heart between ED7.5-18.5 were studied by a combination of thymidine and bromodeoxyuridine labeling techniques.

View Article and Find Full Text PDF
Article Synopsis
  • The His-Purkinje system (HPS) is crucial for coordinating the contraction of the heart's ventricles, with its development showing a shift from base-to-apex activation to a more mature apex-to-base sequence.
  • Studies using imaging techniques in chick embryos suggest that changes in heart hemodynamics significantly impact the timing of this maturation process, with increased hemodynamic load accelerating development and reduced load delaying it.
  • This research highlights the importance of mechanical factors in cardiac development and sets the stage for further investigation into the molecular mechanisms that guide the formation and organization of the HPS.
View Article and Find Full Text PDF

Zebrafish and Xenopus have become popular model organisms for studying vertebrate development of many organ systems, including the heart. However, it is not clear whether the single ventricular hearts of these species possess any equivalent of the specialized ventricular conduction system found in higher vertebrates. Isolated hearts of adult zebrafish (Danio rerio) and African toads (Xenopus laevis) were stained with voltage-sensitive dye and optically mapped in spontaneous and paced rhythms followed by histological examination focusing on myocardial continuity between the atrium and the ventricle.

View Article and Find Full Text PDF