The presented study focuses on the modification of polypropylene (PP) film with tetraethyl orthosilicate (TEOS) under heterogeneous conditions via polydopamine/polyethylene imine (PDA/PEI) chemistry using a facile dip-coating procedure to attain hydrophilic mineral-rich surfaces. Thus, the resulting PP-based films were further immersed in ion-rich simulated body fluid (SBF) to deposit Ca-based minerals onto the film's surfaces efficiently. In addition, the chemical reaction mechanism on PP film was proposed, and mineralisation potential inspected by determination of functional groups of deposits, zeta potential, hydrophilicity and surface morphology/topography using Fourier transform infrared (FTIR) spectroscopy, streaming potential, water contact angle (WCA), scanning electron microscopy (SEM) and atomic force microscopy (AFM).
View Article and Find Full Text PDFIn contrast to their more common counterparts in aqueous solutions, inverse ISAsomes (internally self-assembled somes/particles) are formulated as kinetically stabilised dispersions of hydrophilic, lyotropic liquid-crystalline (LC) phases in non-polar oils. This contribution reports on their formation in bio-compatible oils. We found that it is possible to create inverse hexosomes, inverse micellar cubosomes (Fd3m) and an inverse emulsified microemulsion (EME) in excess squalane with a polyethylene glycol alkyl ether as the primary surfactant forming the LC phase and to stabilise them with hydrophobised silica nanoparticles.
View Article and Find Full Text PDFSteam jet-cooking allows for efficient dissolution of cationic starch in paper production as it operates above the boiling point of water at elevated pressures. However, the processes involved during jet-cooking and its consequences on dissolution and finally paper properties have not been fully resolved so far. As cationic starch is the most important paper additive in the wet end, any energy or material savings during dissolution will enhance the ecologic and economic performance of a paper mill.
View Article and Find Full Text PDFLiquid-phase exfoliation (LPE) is a widely used and promising method for the production of 2D nanomaterials because it can be scaled up relatively easily. Nevertheless, the yields achieved by this process are still low, ranging between 2% and 5%, which makes the large-scale production of these materials difficult. In this report, we investigate the cause of these low yields by examining the sonication-assisted LPE of graphene, boron nitride nanosheets (BNNSs), and molybdenum disulfide nanosheets (MoS NS).
View Article and Find Full Text PDFThe optimization of the thermal treatment of cationic starch in the paper industry offers the opportunity to reduce the energy consumption of this process Four different industrially relevant cationic starches, varying in source, cationization method and degree of substitution were treated by a steam-jet cooking procedure, comparable to industrially employed starch cooking processes. The influence of the starch properties and cooking parameters on the adsorption behavior of the starches on cellulosic pulp was investigated. The adsorbed amount was affected by the cooking temperature and the type of starch.
View Article and Find Full Text PDFIn this report, we present a method to characterize the kinetics of electron transfer across the bilayer of a unilamellar liposome composed of 1,2-dimyristoyl--glycero-3-phosphocholine. The method utilizes synthetic phospholipids containing noninvasive nitroxide spin labels having the >N-O• moiety at well-defined distances from the outer surface of the liposome to serve as reporters for their local environment and, at the same time, permit measurement of the kinetics of electron transfer. We used 5-doxyl and 16-doxyl stearic acids.
View Article and Find Full Text PDFThe influence of two tuning agents, polyglycerol ester (PE) and triblock copolymer (TC), on the properties of glycerol monooleate (MO) liquid crystalline phase (LCP) was investigated to achieve the therapeutic concentration of vancomycin hydrochloride (VHCl) into the eye, topically during 60 min (1 h) and intravitreally during 2880 min (48 h). Different techniques were used to elucidate the impact of surfactants on the structure of the LCP: polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), and in vitro release tests I and II (simulating local and intravitreal application in the eye). The structure analysis by SAXS depicts that the inclusion of PE into the MO LCP provided partial transition of a hexagonal phase into a lamellar phase, and TC induced a partial transition of a hexagonal phase into an LCP which identification was difficult.
View Article and Find Full Text PDFThis review focuses on cationic starches with a low degree of substitution (<0.06) which are mainly used for production of paper-based products. After a brief introduction on starch in general, cationization pathways and importance of cationic starches in paper production, this review emphasizes on the analytical challenges from different perspectives.
View Article and Find Full Text PDFLyotropic bulk reversed hexagonal and reversed cubic liquid crystalline phases (hexagonal and cubic phases) composed of glycerol monooleate (GM) were used to design the vancomycin hydrochloride's (VHCl) delivery systems aiming to maintain VHCl's therapeutic concentration during 24 h in the eye, locally (as an insert) and/or intravitreally (as a bulk phase injection). Bulk VHCl's hexagonal and cubic phases were successfully prepared by melted homogenization and solvent evaporation method, and then an insert was prepared. The structural characteristics of liquid crystalline phases were studied using cross polarized light microscopy and small angle X-ray scattering technique.
View Article and Find Full Text PDFIndustrially relevant, commercially available cationic starches have been investigated towards their interaction capacity with cellulose thin films derived from trimethylsilyl cellulose (TMSC). The starches used in this study stem from different sources (potato, pea, corn) and featured rather low degrees of substitution ranging from 0.030 to 0.
View Article and Find Full Text PDFSelf-assembled phases based on monoglycerides are promising candidates for drug delivery systems. Alterations of these phases need to be performed by addition of substances which are biocompatible. Inverse bicontinuous cubic phases are altered by the addition of five amino acids, namely, glycine, phenylalanine, alanine, glutamine, and tryptophan.
View Article and Find Full Text PDFThe rational design of silver nanoparticles encapsulated in an anticoagulant, hemocompatible polysaccharide, 6-O-chitosan sulfate, is presented. Three different approaches are described for the immobilization of these core shell particles on cellulosic surfaces. The mass of the immobilized particles is quantified using a quartz crystal microbalance with dissipation (QCM-D).
View Article and Find Full Text PDFIn this study, we demonstrate that emulsified microemulsions and micellar cubosomes are suitable as sustained delivery vehicles for water-soluble proteins. Through structural modifications, the loading efficiency of two model proteins, namely bovine serum albumin (BSA) and cytochrome c could be remarkably increased. A procedure for preparing these particles loaded with optimized amounts of sensitive substances is presented.
View Article and Find Full Text PDFMaternal lipoproteins have been studied extensively in human pregnancies, but little is known about the role of fetal lipoproteins. The vascularized human placenta interfaces between the mother and fetus to transfer nutrients for sustaining pregnancy. Unlike that of adults, fetal high-density lipoprotein (HDL), which is in contact with placental vessels, is characterized by a high proportion of apolipoprotein E (apoE).
View Article and Find Full Text PDFOsteopontin (OPN) is an acidic hydrophilic glycophosphoprotein that was first identified as a major sialoprotein in bones. It functions as a cell attachment protein displaying a RGD cell adhesion sequence and as a cytokine that signals through integrin and CD44 cell adhesion molecules. OPN is also implicated in human tumor progression and cell invasion.
View Article and Find Full Text PDFThe internal phase of monolinolein-based dispersions loaded with tetradecane or (R)-(+)-limonene was investigated as a function of the stabilizer content by small-angle X-ray scattering. Phase transitions at the colloidal scale were found in some of nanostructured aqueous dispersions by increasing the stabilizer content. For particles containing a bicontinuous cubic phase, a large increase of the stabilizer concentration promoted a liquid crystalline phase transition from the Pn3m to the Im3m cubic symmetry.
View Article and Find Full Text PDFReversed-micelle synthesis has been used to generate CTAB-stabilized gold (Au-NPs) and silver nanoparticles (Ag-NPs). By inducing a phase transition and subsequent separation of the background supporting microemulsion, it has been possible to extract and purify the NPs from the reaction medium. After addition of excess water, the NPs concentrate into an upper octane-rich phase, with impurities and reaction debris (in particular CTAB) partitioning into the water-rich lower phase.
View Article and Find Full Text PDFSmall-angle X-ray scattering has been used to investigate the nanostructures in precipitated phases of carboxymethylcellulose/oppositely charged C(n)TAB surfactants mixtures in interaction with bivalent copper ions. In copper-free precipitates, a transition from a 2D hexagonal phase H(I) to a micellar cubic surfactant structure Pm3n was found on increasing the polymer concentration (n = 14, 16). By addition of small amounts of copper ions, the internal structure also changes from H(I) to Pm3n cubic and finally turns into a less-ordered phase.
View Article and Find Full Text PDF