Publications by authors named "Angela C Nugent"

We established a university-community partnership with the Boys and Girls Clubs of Chicago (BGCC)-named b-to involve middle school students in antibiotic discovery research. In the course of working with a cohort of students from the BGCC, one student isolated a bacterium from a goose feces sample that produced a new cyclic lipodepsipeptide, which was characterized as orfamide N. Orfamide N is composed of ten mixed D/L-amino acids and a ()-3-hydroxyhexadec-9-enoic acid residue.

View Article and Find Full Text PDF

Myxobacteria are non-photosynthetic bacteria distinguished among prokaryotes by a multicellular stage in their life cycle known as fruiting bodies that are formed in response to nutrient deprivation and stimulated by light. Here, we report an entrained, rhythmic pattern of Myxococcus macrosporus fruiting bodies, forming consistently spaced concentric rings when grown in the dark. Light exposure disrupts this rhythmic phenotype, resulting in a sporadic arrangement and reduced fruiting-body count.

View Article and Find Full Text PDF

Phytochromes (PHYs) are photoreceptor proteins first discovered in plants, where they control a variety of photomorphogenesis events. PHYs as photochromic proteins can reversibly switch between two distinct states: a red light (Pr) and a far-red light (Pfr) absorbing form. The discovery of Bacteriophytochromes (BphPs) in nonphotosynthetic bacteria has opened new frontiers in our understanding of the mechanisms by which these natural photoswitches can control single cell development, although the role of BphPs remains largely unknown.

View Article and Find Full Text PDF

Phytochromes are red-light photoreceptors that were first characterized in plants, with homologs in photosynthetic and non-photosynthetic bacteria known as bacteriophytochromes (BphPs). Upon absorption of light, BphPs interconvert between two states denoted Pr and Pfr with distinct absorption spectra in the red and far-red. They have recently been engineered as enzymatic photoswitches for fluorescent-marker applications in non-invasive tissue imaging of mammals.

View Article and Find Full Text PDF