Publications by authors named "Angela C Narvaez"

In the biological sciences, data from fluorescence and electron microscopy is correlated to allow fluorescence biomolecule identification within the cellular ultrastructure and/or ultrastructural analysis following live-cell imaging. High-accuracy (sub-100 nm) image overlay requires the addition of fiducial markers, which makes overlay accuracy dependent on the number of fiducials present in the region of interest. Here, we report an automated method for light-electron image overlay at high accuracy, i.

View Article and Find Full Text PDF

Cathodoluminescence (CL) microscopy is an emerging analysis technique in the fields of biology and photonics, where it is used for the characterization of nanometer sized structures. For these applications, the use of transparent substrates might be highly preferred, but the detection of CL from nanostructures on glass is challenging because of the strong background generated in these substrates and the relatively weak CL signal from the nanostructures. We present an imaging system for highly efficient CL detection through the substrate using a high numerical aperture objective lens.

View Article and Find Full Text PDF

Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches.

View Article and Find Full Text PDF

We have studied the equilibrium electrostatic profile of III-V semiconductor nanowires using Kelvin probe force microscopy. Qualitative agreement of the measured surface potential levels and expected Fermi level variation for pure InP and InAs nanowires is obtained from electrical images with spatial resolution as low as 10 nm. Surface potential mapping for pure and heterostructured nanowires suggests the existence of charge transfer mechanisms and the formation of a metal-semiconductor electrical contact at the nanowire apex.

View Article and Find Full Text PDF