Publications by authors named "Angela Bruno"

To investigate whether diurnal changes in noninvasive ocular surface parameters and subjective symptoms occur in healthy subjects wearing face mask who were analyzed before and after 8 h of continuous use. In this prospective cross-sectional study, healthy volunteers attending the same workplace environment underwent a noninvasive ocular surface workup by means of Keratograph 5 M (Oculus, Wetzlar, Germany) in the same day at 2 different time points: (i) in the early morning before wearing face mask (T0); (ii) after 8 h of continuous face mask use (T1). Noninvasive break-up time (NIBUT), tear meniscus height (TMH), ocular redness and meibomian gland dropout were measured.

View Article and Find Full Text PDF

The joint activity of neural populations is high dimensional and complex. One strategy for reaching a tractable understanding of circuit function is to seek the simplest dynamical system that can account for the population activity. By imaging 's pedal ganglion during fictive locomotion, here we show that its population-wide activity arises from a low-dimensional spiral attractor.

View Article and Find Full Text PDF

Studies of the mechanisms underlying memory formation have largely focused on the synapse. However, recent evidence suggests that additional, non-synaptic, mechanisms also play important roles in this process. We recently described a novel memory mechanism whereby a particular class of neurons was recruited into the escape swim network with sensitization, a non-associative form of learning.

View Article and Find Full Text PDF

Apolipoprotein E receptor 2 (ApoER2) is an apolipoprotein E receptor involved in long-term potentiation, learning, and memory. Given its role in cognition and its association with the Alzheimer's disease (AD) risk gene, apoE, ApoER2 has been proposed to be involved in AD, though a role for the receptor in the disease is not clear. ApoER2 signaling requires amino acids encoded by alternatively spliced exon 19.

View Article and Find Full Text PDF

Prior studies have found that functional networks can rapidly add neurons as they build short-term memories, yet little is known about the principles underlying this process. Using voltage-sensitive dye imaging, we found that short-term sensitization of Tritonia's swim motor program involves rapid expansion of the number of participating neurons. Tracking neurons across trials revealed that this involves the conversion of recently discovered variably participating neurons to reliable status.

View Article and Find Full Text PDF

The neural substrates of motor programs are only well understood for small, dedicated circuits. Here we investigate how a motor program is constructed within a large network. We imaged populations of neurons in the Aplysia pedal ganglion during execution of a locomotion motor program.

View Article and Find Full Text PDF

Voltage-sensitive dye (VSD) imaging is a powerful technique that can provide, in single experiments, a large-scale view of network activity unobtainable with traditional sharp electrode recording methods. Here we review recent work using VSDs to study small networks and highlight several results from this approach. Topics covered include circuit mapping, network multifunctionality, the network basis of decision making, and the presence of variably participating neurons in networks.

View Article and Find Full Text PDF

Background: We report the preliminary data from a regional registry on ST-elevation myocardial infarction (STEMI) patients treated with primary angioplasty in Apulia, Italy; the region is covered by a single public health-care service, a single public emergency medical service (EMS), and a single tele-medicine service provider.

Methods: Two hundred and ninety-seven consecutive patients with STEMI transferred by regional free public EMS 1-1-8 for primary-PCI were enrolled in the study; 123 underwent pre-hospital electrocardiograms (ECGs) triage by tele-cardiology support and directly referred for primary-PCI, those remaining were just transferred by 1-1-8 ambulances for primary percutaneous coronary intervention (PCI) (diagnosis not based on tele-medicine ECG; already hospitalised patients, emergency-room without tele-medicine support). Time from first ECG diagnostic for STEMI to balloon was recorded; a time-to-balloon <1 h was considered as optimal and patients as timely treated.

View Article and Find Full Text PDF

The chemokine (C-C motif) receptor 5 (CCR5) that belongs to the family of G protein-coupled receptors is exploited by macrophage tropic (R5) human immunodeficiency virus type 1 (HIV-1) to enter cells. Maraviroc, a small molecule CCR antagonist, is used as a part of combination antiretroviral therapy to treat persons infected by R5 HIV-1. CCR5 is expressed in various cancers, and its level of expression is a negative predictor of patients' survival in gastric cancers.

View Article and Find Full Text PDF

The farnesoid X receptor (FXR) and the liver x receptors (LXRs) are bile acid-activated receptors that are highly expressed in the enterohepatic tissues. The mechanisms that support the beneficial effects of bariatric surgery are only partially defined. We have investigated the effects of ileal interposition (IT), a surgical relocation of the distal ileum into the proximal jejunum, on FXR and LXRs in rats.

View Article and Find Full Text PDF

Background: Toll like receptors (TLRs) sense the intestinal microbiota and regulate the innate immune response. A dysregulation of TLRs function participates into intestinal inflammation. Farnesoid X Receptor (FXR) is a nuclear receptor and bile acid sensor highly expressed in entero-hepatic tissues.

View Article and Find Full Text PDF

Background: Signals generated by the inflammed intestine are thought to contribute to metabolic derangement. The intestinal microbiota contributes to instructing the immune system beyond the intestinal wall and its modulation is a potential target for treating systemic disorders.

Aims: To investigate the pathogenetic role of low grade intestinal inflammation in the development of steatohepatitis and atherosclerosis in a model of genetic dyslipidemia and to test the therapeutic potential of a probiotics intervention in protecting against development of these disorders.

View Article and Find Full Text PDF

Introduction: Methionine dependency occurs frequently in tumor cells. Here we have investigated the effect of methionine deficiency on metastatic potential of gastric cancer cells in vitro and in vivo.

Materials And Methods: Model of peritoneal carcinomatosis and xenograft was generated by intraperitoneal or subcutaneous implantation of gastric cancer cells in NOD-SCID mice.

View Article and Find Full Text PDF

Background And Purpose: Low doses of aspirin (acetylsalicylic acid; ASA) and non-steroidal anti-inflammatory drugs (NSAIDs) increase the risk of gastrointestinal bleeding. GPBAR1 is a bile acid receptor expressed in the gastrointestinal tract. Here, we have investigated whether GPBAR1 was required for mucosal protection in models of gastrointestinal injury caused by ASA and NSAIDs.

View Article and Find Full Text PDF

To what extent are motor networks underlying rhythmic behaviors rigidly hard-wired versus fluid and dynamic entities? Do the members of motor networks change from moment-to-moment or from motor program episode-to-episode? These are questions that can only be addressed in systems where it is possible to monitor the spiking activity of networks of neurons during the production of motor programs. We used large-scale voltage-sensitive dye (VSD) imaging followed by Independent Component Analysis spike-sorting to examine the extent to which the neuronal network underlying the escape swim behavior of Tritonia diomedea is hard-wired versus fluid from a moment-to-moment perspective. We found that while most neurons were dedicated to the swim network, a small but significant proportion of neurons participated in a surprisingly variable manner.

View Article and Find Full Text PDF

Intracellular Ca(2+) dysregulation is an underlying component of Alzheimer's disease (AD) pathophysiology, and recent evidence implicates the ryanodine receptor (RyR) in the disease pathway. Three genes code for different RyR isoforms and each gene transcript gives rise to several alternatively spliced messenger RNAs (mRNAs). These variants confer distinct functionality to the RyR channel, such as altering Ca(2+) release properties or subcellular localization.

View Article and Find Full Text PDF

Proteases that degrade the amyloid-β peptide (Aβ) are important in protecting against Alzheimer's disease (AD), and understanding these proteases is critical to understanding AD pathology. Endopeptidases sensitive to inhibition by thiorphan and phosphoramidon are especially important, because these inhibitors induce dramatic Aβ accumulation (∼30- to 50-fold) and pathological deposition in rodents. The Aβ-degrading enzyme neprilysin (NEP) is the best known target of these inhibitors.

View Article and Find Full Text PDF