Publications by authors named "Angela Brodie"

Estrogen deprivation has a profound effect on the female brain. One of the most obvious examples of this condition is hot flushes. Although estrogens relieve these typical climacteric symptoms, many women do not want to take them owing to unwanted side-effects impacting, for example, the uterus, breast and blood.

View Article and Find Full Text PDF

Efforts to induce the differentiation of cancer stem cells through treatment with all-trans retinoic acid (ATRA) have yielded limited success, partially due to the epigenetic silencing of the retinoic acid receptor (RAR)-β The histone deacetylase inhibitor entinostat is emerging as a promising antitumor agent when added to the standard-of-care treatment for breast cancer. However, the combination of epigenetic, cellular differentiation, and chemotherapeutic approaches against triple-negative breast cancer (TNBC) has not been investigated. In this study, we found that combined treatment of TNBC xenografts with entinostat, ATRA, and doxorubicin (EAD) resulted in significant tumor regression and restoration of epigenetically silenced RAR-β expression.

View Article and Find Full Text PDF

Heregulin-driven ERBB3 signaling has been implicated as a mechanism of resistance to cytotoxic and antiendocrine therapies in preclinical breast cancer models. In this study, we evaluated the effects of seribantumab (MM-121), a heregulin-blocking anti-ERBB3 monoclonal antibody, alone and in combination with the aromatase inhibitor letrozole, on cell signaling and tumor growth in a preclinical model of postmenopausal estrogen receptor-positive (ER(+)) breast cancer. In vitro, heregulin treatment induced estrogen receptor phosphorylation in MCF-7Ca cells, and long-term letrozole-treated (LTLT-Ca) cells had increased expression and activation levels of EGFR, HER2, and ERBB3.

View Article and Find Full Text PDF

Many neurological and psychiatric maladies originate from the deprivation of the human brain from estrogens. However, current hormone therapies cannot be used safely to treat these conditions commonly associated with menopause because of detrimental side effects in the periphery. The latter also prevents the use of the hormone for neuroprotection.

View Article and Find Full Text PDF

Resistance to aromatase inhibitors (AIs) involves increased HER2. One mechanism by which HER2 may mediate resistance is through expansion of the tumor initiating cell (TIC) population. This study investigates whether combining all-trans retinoic acid (ATRA) and histone deacetylase inhibitor entinostat (ENT) can inhibit TICs and HER2 in AI-resistant cells and tumors.

View Article and Find Full Text PDF

Aromatase inhibitors are effective drugs that reduce or eliminate hormone-sensitive breast cancer. However, despite their efficacy, resistance to these drugs can occur in some patients. The INrf2 (Keap1):Nrf2 complex serves as a sensor of drug/radiation-induced oxidative/electrophilic stress.

View Article and Find Full Text PDF

In our effort to discover potent and specific inhibitors of 17α-hydroxylase/17,20-lyase (CYP17), the key enzyme which catalyzes the biosynthesis of androgens from progestins, 3β-(hydroxy)-17-(1H-benzimidazole-1-yl)androsta-5,16-diene (Galeterone or TOK-001, formerly called VN/124-1) was identified as a selective development candidate which modulates multiple targets in the androgen receptor (AR) signaling pathway. This drug annotation summarizes the mechanisms of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and human efficacy data for galeterone, which has successfully completed phase II clinical development in men with castration resistant (advanced) prostate cancer (CRPC). Phase III clinical studies in CRPC patients are scheduled to begin in early 2015.

View Article and Find Full Text PDF

Aromatase inhibitors (AIs) have become one of the mainstays of treatment of postmenopausal women with hormone receptorpositive breast cancer. However, acquired resistance to treatment continues to be a significant clinical challenge. There is increasing evidence from preclinical studies that activation of growth factor signaling pathways, as well as cross-talk between these pathways and estrogen receptor-alpha signaling pathways are important mechanisms that contribute to AI resistance.

View Article and Find Full Text PDF

Most breast cancer (BC) patients have tumors that express hormone receptors (HRs). Although endocrine therapy, such as aromatase inhibitors, is very effective, most patients with metastatic HR-positive (HR(+)) BC become resistant to endocrine therapy at some point in their treatment and subsequently require chemotherapy. The PI3K/mTOR pathway is often upregulated in endocrine-resistant BC patients and, therefore, has been one of the targets for development of new agents.

View Article and Find Full Text PDF

Clinically, there are two distinct types of aromatase inhibitor (AI) resistance, namely acquired and innate resistance. Because the underlying mechanisms of these two types of resistance may not be mutually exclusive, strategies to tackle these resistances may not be effective when used interchangeably. Activation of growth factor receptor pathways is the hallmark of acquired AI resistance.

View Article and Find Full Text PDF

Introduction: Although aromatase inhibitors (AIs; for example, letrozole) are highly effective in treating estrogen receptor positive (ER+) breast cancer, a significant percentage of patients either do not respond to AIs or become resistant to them. Previous studies suggest that acquired resistance to AIs involves a switch from dependence on ER signaling to dependence on growth factor-mediated pathways, such as human epidermal growth factor receptor-2 (HER2). However, the role of HER2, and the identity of other relevant factors that may be used as biomarkers or therapeutic targets remain unknown.

View Article and Find Full Text PDF

We previously showed that in innately resistant tumors, silencing of the estrogen receptor (ER) could be reversed by treatment with a histone deacetylase (HDAC) inhibitor, entinostat. Tumors were then responsive to aromatase inhibitor (AI) letrozole. Here, we investigated whether ER in the acquired letrozole-resistant tumors could be restored with entinostat.

View Article and Find Full Text PDF

Zoledronic acid, a third-generation bisphosphonate, has been shown to reduce cell migration, invasion, and metastasis. However, the effects of zoledronic acid on the epithelial-mesenchymal transition (EMT), a cellular process essential to the metastatic cascade, remain unclear. Therefore, the effects of zoledronic acid on EMT, using triple-negative breast cancer (TNBC) cells as a model system, were examined in more detail.

View Article and Find Full Text PDF

Despite significant improvement in the treatment outcome of hormone responsive postmenopausal breast cancer, some patients eventually acquire resistance to aromatase inhibitors (AIs). Using our MCF-7Ca xenograft model, we observed that although AIs such as anastrozole initially inhibit tumor growth effectively, tumors eventually began to grow. Our previous data show that anastrozole-resistant tumors upregulate growth factor receptor pathways as they adapt to grow in the low estrogen environment.

View Article and Find Full Text PDF

Obesity is associated with increased risk and poor prognosis for many types of cancer. The mechanisms underlying the obesity-cancer link are becoming increasingly clear and provide multiple opportunities for primary to tertiary prevention. Several obesity-related host factors can influence tumor initiation, progression and/or response to therapy, and these have been implicated as key contributors to the complex effects of obesity on cancer incidence and outcomes.

View Article and Find Full Text PDF

Aromatase inhibitors (AIs) are an effective therapy in treating estrogen receptor-positive breast cancer. Nonetheless, a significant percentage of patients either do not respond or become resistant to AIs. Decreased dependence on ER-signaling and increased dependence on growth factor receptor signaling pathways, particularly human epidermal growth factor receptor 2 (EGFR2/HER2), have been implicated in AI resistance.

View Article and Find Full Text PDF

Zoledronic acid (ZA), a bisphosphonate originally indicated for use in osteoporosis, has been reported to exert a direct effect on breast cancer cells, although the mechanism of this effect is currently unknown. Data from the ABCSG-12 and ZO-FAST clinical trials suggest that treatment with the combination of ZA and aromatase inhibitors (AI) result in increased disease free survival in breast cancer patients over AI alone. To determine whether the mechanism of this combination involved inhibition of aromatase, AC-1 cells (MCF-7 human breast cancer cells transfected with an aromatase construct) were treated simultaneously with combinations of ZA and AI letrozole.

View Article and Find Full Text PDF

Abstract Breast cancer is the most prevalent cancer and the second leading cause of death among women worldwide. The advent of hormonal therapy has revolutionized the treatment for breast cancer for a century. In the 1960s, an important advance was the development of the antiestrogen tamoxifen.

View Article and Find Full Text PDF

Although hereditary breast cancers have defects in the DNA damage response that result in genomic instability, DNA repair abnormalities in sporadic breast cancers have not been extensively characterized. Recently, we showed that, relative to nontumorigenic breast epithelial MCF10A cells, estrogen receptor-positive (ER+) MCF7 breast cancer cells and progesterone receptor-positive (PR+) MCF7 breast cancer cells have reduced steady-state levels of DNA ligase IV, a component of the major DNA-protein kinase (PK)-dependent nonhomologous end joining (NHEJ) pathway, whereas the steady-state level of DNA ligase IIIα, a component of the highly error-prone alternative NHEJ (ALT NHEJ) pathway, is increased. Here, we show that tamoxifen- and aromatase-resistant derivatives of MCF7 cells and ER(-)/PR(-) cells have even higher steady-state levels of DNA ligase IIIα and increased levels of PARP1, another ALT NHEJ component.

View Article and Find Full Text PDF

Insulin-like growth factor (IGF) signaling has been implicated in the resistance to hormonal therapy in breast cancer. Using a model of postmenopausal, estrogen-dependent breast cancer, we investigated the antitumor effects of the dual IGF-1R/InsR tyrosine kinase inhibitor BMS-754807 alone and in combination with letrozole or tamoxifen. BMS-754807 exhibited antiproliferative effects in vitro that synergized strongly in combination with letrozole or 4-hydroxytamoxifen and fulvestrant.

View Article and Find Full Text PDF

Progression from the androgen-sensitive to androgen-insensitive (or castration-resistant) stage is the major obstacle for sustained effectiveness of hormonal therapy for prostate cancer. The androgen receptor (AR) and its splice variants play important roles in regulating the transcription program essential for castration resistance. Here, we report the identification of a novel AR splice variant, designated as AR8, which is up-regulated in castration-resistant prostate cancer cells.

View Article and Find Full Text PDF

In a continuing study of our clinical candidate 5 VN/124-1 (TOK-001) and analogs as potential agents for prostate cancer therapy, putative metabolites (10, 15 and 18) of compound 5 were rationally designed and synthesized. However, none of these agents were as efficacious as 5 in several in vitro studies. Using western blot analysis, we have generated a preliminary structure-activity relationship (SAR) of 5 and related analogs as androgen receptor ablative agents (ARAAs).

View Article and Find Full Text PDF

Background: Aromatase inhibitors (AI) that inhibit breast cancer cell growth by blocking estrogen synthesis have become the treatment of choice for post-menopausal women with estrogen receptor positive (ER+) breast cancer. However, some patients display de novo or acquired resistance to AI. Interactions between estrogen and growth factor signaling pathways have been identified in estrogen-responsive cells as one possible reason for acquisition of resistance.

View Article and Find Full Text PDF