Publications by authors named "Angela A Wendel"

Four glycerol-3-phosphate acyltransferase (GPAT) isoforms, each encoded by a separate gene, catalyze the initial step in glycerolipid synthesis; in liver, the major isoforms are GPAT1 and GPAT4. To determine whether each of these hepatic isoforms performs a unique function in the metabolism of fatty acid, we measured the incorporation of de novo synthesized fatty acid or exogenous fatty acid into complex lipids in primary mouse hepatocytes from control, Gpat1(-/-), and Gpat4(-/-) mice. Although hepatocytes from each genotype incorporated a similar amount of exogenous fatty acid into triacylglycerol (TAG), only control and Gpat4(-/-) hepatocytes were able to incorporate de novo synthesized fatty acid into TAG.

View Article and Find Full Text PDF
Article Synopsis
  • Increased glycerolipid synthesis disrupts insulin's ability to suppress glucose production in the liver, but the underlying mechanism is unclear.
  • Overexpression of GPAT1 in mouse liver cells reduces key insulin signaling pathways and mTORC2 activity, while knocking out GPAT1 enhances these pathways.
  • The study identifies phosphatidic acid as a lipid intermediate that inhibits mTORC2 by disrupting its association with rictor, linking excess nutrients and triglyceride synthesis to insulin resistance in the liver.
View Article and Find Full Text PDF

Objective: Hepatic steatosis is strongly associated with insulin resistance, but a causal role has not been established. In ob/ob mice, sterol regulatory element binding protein 1 (SREBP1) mediates the induction of steatosis by upregulating target genes, including glycerol-3-phosphate acyltransferase-1 (Gpat1), which catalyzes the first and committed step in the pathway of glycerolipid synthesis. We asked whether ob/ob mice lacking Gpat1 would have reduced hepatic steatosis and improved insulin sensitivity.

View Article and Find Full Text PDF

Conjugated linoleic acid (CLA) reduces body weight and adipose mass in a variety of species. The mechanisms by which CLA depletes adipose mass are unclear, but two independent microarray analyses indicate that in white adipose tissue (WAT), uncoupling protein 1 (UCP1) was among genes most changed by CLA. The objective of this study was to determine whether CLA induces ectopic expression of UCP1 in WAT, which may contribute to increased energy expenditure and weight loss.

View Article and Find Full Text PDF

Cancer cachexia is a syndrome of unintentional weight loss that is characterized by wasting of both skeletal muscle and adipose tissue. Glucose intolerance and insulin resistance have been associated with cancer cachexia. However, it is unknown whether resistance to insulin has a role in the development of cachexia.

View Article and Find Full Text PDF

Four homologous isoforms of glycerol-3-phosphate acyltransferase (GPAT), each the product of a separate gene, catalyze the synthesis of lysophosphatidic acid from glycerol-3-phosphate and long-chain acyl-CoA. This step initiates the synthesis of all the glycerolipids and evidence from gain-of-function and loss-of-function studies in mice and in cell culture strongly suggests that each isoform contributes to the synthesis of triacylglycerol. Much work remains to fully delineate the regulation of each GPAT isoform and its individual role in triacylglycerol synthesis.

View Article and Find Full Text PDF

Conjugated linoleic acid (CLA) induces insulin resistance preceded by rapid depletion of the adipokines leptin and adiponectin, increased inflammation, and hepatic steatosis in mice. To determine the role of leptin in CLA-mediated insulin resistance and hepatic steatosis, recombinant leptin was coadministered with dietary CLA in ob/ob mice to control leptin levels and to, in effect, negate the leptin depletion effect of CLA. In a 2 x 2 factorial design, 6 week old male ob/ob mice were fed either a control diet or a diet supplemented with CLA and received daily intraperitoneal injections of either leptin or vehicle for 4 weeks.

View Article and Find Full Text PDF

The dietary fatty acid conjugated linoleic acid (CLA) reduces hepatic lipid accumulation in some rodent models for obesity and hepatic steatosis. However, these effects are variable and complex due to differences in isomer responses and degree and sensitivity to changes in adiposity. Here, we hypothesized that CLA decreases hepatic steatosis in a diet-induced model of obesity in rats which are resistant to the adipose-lowering effects of CLA.

View Article and Find Full Text PDF

Dysfunctional cross talk between adipose tissue and liver tissue results in metabolic and inflammatory disorders. As an insulin sensitizer, rosiglitazone (Rosi) improves insulin resistance yet causes increased adipose mass and weight gain in mice and humans. Conjugated linoleic acid (CLA) reduces adipose mass and body weight gain but induces hepatic steatosis in mice.

View Article and Find Full Text PDF

Conjugated linoleic acid (CLA) causes insulin resistance and hepatic steatosis in conjunction with depletion of adipokines in some rodent models. Our objective was to determine whether the maintenance of adipokines, mainly leptin and adiponectin, by either removing CLA from diets or using an adiponectin enhancer, rosiglitazone (ROSI), could attenuate CLA-induced insulin resistance. Male C57BL/6 mice were consecutively fed two experimental diets containing 1.

View Article and Find Full Text PDF

Dietary CLA has been shown to enhance glucose tolerance in several animal models, but in mice it induces insulin resistance and lipodystrophy. In this study, the effects of 2 wk of diet supplementation with either 1.5% CLA or 0.

View Article and Find Full Text PDF