Publications by authors named "Angela A Vitali"

The c-MET receptor has a function in many human cancers and is a proven therapeutic target. Generating antagonistic or therapeutic monoclonal antibodies (mAbs) targeting c-MET has been difficult because bivalent, intact anti-Met antibodies frequently display agonistic activity, necessitating the use of monovalent antibody fragments for therapy. By using a novel strategy that included immunizing with cells expressing c-MET, we obtained a range of mAbs.

View Article and Find Full Text PDF

Purpose: Factors affecting the efficacy of therapeutic monoclonal antibodies (mAb) directed to the epidermal growth factor receptor (EGFR) remain relatively unknown, especially in glioma.

Experimental Design: We examined the efficacy of two EGFR-specific mAbs (mAbs 806 and 528) against U87MG-derived glioma xenografts expressing EGFR variants. Using this approach allowed us to change the form of the EGFR while keeping the genetic background constant.

View Article and Find Full Text PDF

We have investigated functional effects of glycosylation at N(579) of the epidermal growth factor receptor (EGFR). Our previous study showed that the population of cell-surface expressed EGFRs in A431 cells, a human epidermoid carcinoma cell line, is composed of two subpopulations that differ by glycosylation at N(579) [Zhen et al. (2003) Biochemistry 42, 5478-5492].

View Article and Find Full Text PDF

Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2-7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active and imparts a significant in vivo growth advantage to glioma cells.

View Article and Find Full Text PDF

Blockade of epidermal growth factor receptor (EGFR) signaling with specific inhibitors of the EGFR tyrosine kinase retards cellular proliferation and arrests the growth of tumor xenografts. AG1478, an inhibitor of the EGFR tyrosine kinase, is used in laboratory studies; however, its therapeutic potential has not been elucidated. Therefore, we evaluated an aqueous form of AG1478 for its antitumor activity in mice bearing human xenografts expressing the WT EGFR or a naturally occurring ligand-independent truncation of the EGFR [delta2-7 (de2-7) EGFR or EGFRvIII].

View Article and Find Full Text PDF