Self-assembling peptides are a popular vector for therapeutic cargo delivery due to their versatility, tunability, and biocompatibility. Accurately predicting secondary and supramolecular structures of self-assembling peptides is essential for de novo peptide design. However, computational modeling of such assemblies is not yet able to accurately predict structure formation for many peptide sequences.
View Article and Find Full Text PDFDue to the lack of early symptoms and difficulty of accurate diagnosis, ovarian cancer is the most lethal gynecological cancer faced by women. First-line therapy includes a combination of tumor resection surgery and chemotherapy regimen. However, treatment becomes more complex upon recurrence due to development of drug resistance.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2019
Glioblastoma multiforme is the most common and aggressive primary brain tumor. Even with aggressive treatment including surgical resection, radiation, and chemotherapy, patient outcomes remain poor, with five-year survival rates at only 10%. Barriers to treatment include inefficient drug delivery across the blood brain barrier and development of drug resistance.
View Article and Find Full Text PDFObjectives: Despite significant advances in cancer treatment, the prognosis for oral cancer remains poor in comparison to other cancer types, including breast, skin, and prostate. As a result, more effective therapeutic modalities are needed for the treatment of oral cancer. Consequently, in the present study, we examined the feasibility of using a dual peptide carrier approach, combining an epidermal growth factor receptor (EGFR)-targeting peptide with an endosome-disruptive peptide, to mediate targeted delivery of small interfering RNAs (siRNAs) into EGFR-overexpressing oral cancer cells and induce silencing of the targeted oncogene, cancerous inhibitor of protein phosphatase 2A (CIP2A).
View Article and Find Full Text PDFIntracellular delivery and endosomal escape of functional small interfering RNAs (siRNAs) remain major barriers limiting the clinical translation of RNA interference (RNAi)-based therapeutics. Recently, we demonstrated that a cell-penetrating endosome-disruptive peptide we synthesized, termed 599, enhanced the intracellular delivery and bioavailability of siRNAs designed to target the CIP2A oncoprotein (siCIP2A) into oral cancer cells and consequently inhibited oral cancer cell invasiveness and anchorage-independent growth in vitro. Thus, to further assess the therapeutic potential of the 599 peptide in mediating RNAi-based therapeutics for oral cancer and its prospective applicability in clinical settings, the objective of the current study was to determine whether intratumoral dosing of the 599 peptide-siCIP2A complex could induce silencing of CIP2A and consequently impair tumor growth using a xenograft oral cancer mouse model.
View Article and Find Full Text PDFThe goals of bioengineering strategies for targeted cancer therapies are (1) to deliver a high dose of an anticancer drug directly to a cancer tumor, (2) to enhance drug uptake by malignant cells, and (3) to minimize drug uptake by nonmalignant cells. Effective cancer-targeting therapies will require both passive- and active-targeting strategies and a thorough understanding of physiologic barriers to targeted drug delivery. Designing a targeted therapy includes the selection and optimization of a nanoparticle delivery vehicle for passive accumulation in tumors, a targeting moiety for active receptor-mediated uptake, and stimuli-responsive polymers for control of drug release.
View Article and Find Full Text PDF