Chitosan is a biopolymer with unique properties that have attracted considerable attention in various scientific fields in recent decades. Although chitosan is known for its poor electrical and mechanical properties, there is interest in producing chitosan-based materials reinforced with carbon-based materials to impart exceptional properties such as high electrical conductivity and high Young's modulus. This study describes the synergistic effect of carbon-based materials, such as reduced graphene oxide and carbon nanotubes, in improving the electrical, optical, and mechanical properties of chitosan-based films.
View Article and Find Full Text PDFPolymers (Basel)
February 2022
A viable alternative for the next generation of wound dressings is the preparation of electrospun fibers from biodegradable polymers in combination with inorganic nanoparticles. A poly(vinyl alcohol)-chitosan-silver nanoparticles (PVA-CTS-Ag NPs) system has been developed for antimicrobial and wound healing applications. Here, the preparation of PVA-CTS-Ag electrospun fibers using a two-step process is reported in order to analyze changes in the microstructural, mechanical, and antibacterial properties and confirm their potential application in the biomedical field.
View Article and Find Full Text PDFThe data set presented here offers evidence of the elemental composition related to a SEM micrograph of [Mn(PO(OH))(PO)⋅4HO] (MnPhos) powders, known as hurealite, and synthesized by the reflux method. In addition, it contains additional information of the glass transition, melting and decomposition temperatures and their weight loss percent of coatings based on MnPhos incorporated into waterborne poly(urethane) (WPU). These data are complementing of the article "Corrosion investigation of new hybrid organic/inorganic coatings for carbon steel substrates: electrochemical and surface characterizations".
View Article and Find Full Text PDFThese data display evidence of the fracture through the morphologies and the topographical features as well as roughness data of different ratios of R(recycled)-PET/PLA, PET(virgin)/PLA, PET(virgin)/Chitosan and R(recycled)-PET/chitosan. Also, data of the morphologies after degradation under accelerated weathering test and degradation mechanisms are revealed. The data supplement the article "Comparative assessment of miscibility and degradability on PET/PLA and PET/chitosan blends".
View Article and Find Full Text PDF