Multiple myeloma (MM) cells are addicted to MYC and its direct transactivation targets IRF4 for proliferation and survival. MYC and IRF4 are still considered "undruggable," as most small-molecule inhibitors suffer from low potency, suboptimal pharmacokinetic properties, and undesirable off-target effects. Indirect inhibition of MYC/IRF4 emerges as a therapeutic vulnerability in MM.
View Article and Find Full Text PDFThe proto-oncogene is associated with an aggressive phenotype in breast cancer. Its role in hematologic malignancies is incompletely defined, in part because is not readily detected on the surface of cancer cells. We demonstrate that truncated ERBB2, which lacks the extracellular domain, is overexpressed on primary CD34 myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) cells compared with healthy hematopoietic cells.
View Article and Find Full Text PDFHematopoietic stem and progenitor cells (HSPCs) depend on regulatory cytokines from the marrow microenvironment. From an unbiased cytokine screen of murine marrow supernatants, we identified C-C motif chemokine ligand 5 (CCL5) as an endothelial cell-secreted hematopoietic growth factor. Following treatment with CCL5, hematopoietic regeneration is accelerated and survival is prolonged after radiation.
View Article and Find Full Text PDFPurpose: Myelodysplastic syndrome (MDS) is associated with a dysregulated innate immune system. The purpose of this study was to determine whether modulation of the innate immune system via high mobility group box-1 (HMGB1) could reduce cell viability in MDS.
Experimental Design: We quantified HMGB1 in an MDS cell line MDS-L and in primary MDS cells compared with nonmalignant hematopoietic cells.
Int J Radiat Oncol Biol Phys
June 2019
Purpose: Extracellular vesicles (EVs) are shed vesicles that bear a combination of nucleic acids and proteins. EVs are becoming recognized as a mode of cell-to-cell communication. Because hematopoietic stem cells reside in proximity to endothelial cells (ECs), we investigated whether EC-derived EVs could regulate hematopoietic stem cell regeneration after ionizing radiation.
View Article and Find Full Text PDFHematopoietic regeneration following chemotherapy may be distinct from regeneration following radiation. While we have shown that epidermal growth factor (EGF) accelerates regeneration following radiation, its role following chemotherapy is currently unknown. We sought to identify EGF as a hematopoietic growth factor for chemotherapy-induced myelosuppression.
View Article and Find Full Text PDFBackground: The opioid antagonists naloxone/naltrexone are involved in improving learning and memory, but their cellular and molecular mechanisms remain unknown. We investigated the effect of naloxone/naltrexone on hippocampal α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPAR) trafficking, a molecular substrate of learning and memory, as a probable mechanism for the antagonists activity.
Methods: To measure naloxone/naltrexone-regulated AMPAR trafficking, pHluorin-GluA1 imaging and biochemical analyses were performed on primary hippocampal neurons.
Chronic morphine treatment resulting in the alteration of postsynaptic levels of AMPA receptors, thereby modulating synaptic strength, has been reported. However, the mechanism underlying such drug-induced synaptic modification has not been resolved. By monitoring the GluR1 trafficking in primary hippocampal neurons using the pHluorin-GluR1 imaging and biotinylation studies, we observed that prolonged morphine exposure significantly induced loss of synaptic and extrasynaptic GluR1 by internalization.
View Article and Find Full Text PDFCentral noradrenergic signalling mediates arousal and facilitates learning through unknown molecular mechanisms. Here, we show that the beta(2)-adrenergic receptor (beta(2)AR), the trimeric G(s) protein, adenylyl cyclase, and PKA form a signalling complex with the AMPA-type glutamate receptor subunit GluR1, which is linked to the beta(2)AR through stargazin and PSD-95 and their homologues. Only GluR1 associated with the beta(2)AR is phosphorylated by PKA on beta(2)AR stimulation.
View Article and Find Full Text PDFFormyl peptide-receptor like-1 (FPRL-1) may possess critical roles in Alzheimer's diseases, chemotaxis and release of neurotoxins, possibly through its regulation of nuclear factor-kappaB (NFkappaB). Here we illustrate that activation of FPRL-1 in human U87 astrocytoma or Chinese hamster ovary cells stably expressing the receptor resulted in the phosphorylations of inhibitor-kappaB kinase (IKK), an onset kinase for NFkappaB signaling cascade. FPRL-1 selective hexapeptide Trp-Lys-Tyr-Met-Val-Met (WKYMVM) promoted IKK phosphorylations in time- and dose-dependent manners while pre-treatment of pertussis toxin abrogated the Galpha(i/o)-dependent stimulations.
View Article and Find Full Text PDFThe human formyl peptide receptor like 1 (FPRL-1) is a variant of the Gi-coupled formyl-peptide receptor. Functional FPRL-1 is endogenously expressed in the U87 astrocytoma cell line and there is accumulating evidence to suggest that FPRL-1 may be involved in neuroinflammation associated with the pathogenesis of Alzheimer's disease. In this study, we examined the ability of FPRL-1 to mobilize intracellular Ca2+ in U87 astrocytoma cells, as well as in Chinese hamster ovary (CHO) cells stably expressing FPRL-1.
View Article and Find Full Text PDFMitogen-activated protein kinases (MAPKs) are not only pivotal mediators of signal transduction but they also regulate diverse biological processes ranging from survival, proliferation and differentiation to apoptosis. By using human U87 astrocytoma and transfected FPRL1/CHO cells, we have demonstrated that activation of FPRL1 with WKYMVM effectively phosphorylated JNK and ERK. Interestingly, p38 MAPK activation was only seen with FPRL1/CHO cells.
View Article and Find Full Text PDFHeptahelical opioid receptors are implicated in the transcriptional regulation of neuronal development. Here we demonstrated that activation of mu-opioid receptors in human neuroblastoma SH-SY5Y cells led to the activation of signal transducer and activator of transcription 3 (STAT3), a transcription factor central to the regulation of numerous biological processes. The mu-opioid-induced activation of STAT3 is sensitive to receptor was further shown to pertussis toxin treatment and required JAK and Src tyrosine kinases, but not phosphatidylinositol 3-kinase.
View Article and Find Full Text PDFOpioid receptors are the therapeutic targets of narcotic analgesics. All three types of opioid receptors (mu, delta and kappa) are prototypical G(i)-coupled receptors with common signaling characteristics in their regulation of intracellular events. Nevertheless, numerous signaling processes are differentially regulated by the three receptors.
View Article and Find Full Text PDFOpioid peptides exert diverse physiological functions through their cognate receptors. One subtype of the opioid receptors, kappa-opioid receptor, is endogenously expressed in human monocytic THP-1 cells. Stimulation of the THP-1 cells with a kappa-opioid receptor-selective agonist exerted a Gi-dependent activation of c-Jun N-terminal kinase (JNK).
View Article and Find Full Text PDFHeptahelical opioid receptors utilize Gi proteins to regulate a multitude of effectors including the classical adenylyl cyclases and the more recently discovered mitogen-activated protein kinases (MAPKs). The c-Jun NH2-terminal kinases (JNKs) belong to one of three subgroups of MAPKs. In NG108-15 neuroblastoma x glioma hybrid cells that endogenously express delta-opioid receptors, delta-agonist dose-dependently stimulated JNK activity in a pertussis toxin-sensitive manner.
View Article and Find Full Text PDF