By virtue of its alkylidenecyclopropane moiety, 2-(cyclopropylidenemethyl)benzaldehyde reacts with a range of amines and thiols under Lewis acid catalysis. These reactions yield 1,3-bis(arylamino) and 1,3-bis(arylthio and alkylthio)indanes, respectively, which are spirolinked to the cyclopropane ring at carbon 2. The reaction mechanism, and the peculiar contribution of the cyclopropane ring, have been scrutinized via DFT calculations.
View Article and Find Full Text PDFC-Alkoxycarbonyl- C-phenyl- N-aryl ketenimines bearing 1,3-dithiolan-2-yl or 1,3-dithian-2-yl substituents at ortho position of the C-phenyl ring, respectively, transform into isoquinoline-1-thiones and quinolin-4-ones under thermal treatment in toluene solution. The formation of isoquinolinethiones involves a rare degradation of the 1,3-dithiolane ring, whereas, in contrast, the 1,3-dithiane ring remains intact during the reaction course leading to quinolin-4-ones. Computational density functional theory results support that the kinetically favorable mechanism for the formation of isoquinoline-1-thiones proceeds through a [1,5]-hydride shift/6π-electrocyclization cascade, followed by a thiirane extrusion process.
View Article and Find Full Text PDFMacrocyclic bis(thioureas) derived from 2,2'-biphenyl and binaphthyl skeletons have been synthesized by reaction of 2,2'-diaminobiaryl and 2,2'-bis(isothiocyanato)biaryl derivatives. The splitting of these bis(thioureas) into two units of the respective cyclic monothioureas has been monitored by NMR, shedding some light on the factors that control these processes. Additionally, a computational study revealed up to three mechanistic paths for the conversion of the 2,2'-biphenyl-derived bis(thiourea) into the corresponding monothiourea.
View Article and Find Full Text PDFThe [3 + 2] annulation reaction of C,C,N-trisubstituted ketenimines with donor-acceptor cyclopropanes bearing aryl, styryl and vinyl substituents at the C2 position, triggered by the Lewis acid Sc(OTf), supplies highly substituted pyrrolidines. Activated cyclopropanes fused to naphthalene and [1]benzopyrane nuclei are also suitable substrates in similar transformations, yielding partially saturated benz[g]indoles and [1]benzopyran[4,3-b]pyrroles. An intramolecular version of this ketenimine/cyclopropane [3 + 2] annulation has also been developed leading to the pyrrolo[2,1-a]isoindole framework.
View Article and Find Full Text PDF6-Phenylfulvenes bearing (1,3-dioxolan or dioxan)-2-yl substituents at ortho position convert into mixtures of 4- and 9-(hydroxy)alkoxy-substituted benz[f]indenes as result of cascade processes initiated by a thermally activated hydrogen shift. Structurally related fulvenes with non-cyclic acetalic units afforded mixtures of 4- and 9-alkoxybenz[f]indenes under similar thermal conditions. Mechanistic paths promoted by an initial [1,4]-, [1,5]-, [1,7]- or [1,9]-H shift are conceivable for explaining these conversions.
View Article and Find Full Text PDFThe cycloisomerization reactions of allenes bearing cyclic acetal, thioacetal and dithioacetal subunits, when triggered either by the catalytic action of AgSbF6 or by one equiv. of CF3COOH, gave rise to four different classes of indeno-fused 1,4-dioxa, oxathia and dithia heterocycles, in most cases as a single diastereomer. Acyclic acetals and dithioacetals are also suitable starting materials in similar transformations yielding 1,2-disubstituted indenes and 1,3-disubstituted 2-alkylideneindanes.
View Article and Find Full Text PDFA series of 2-(1,3-dioxolan-2-yl)phenylallenes that contained a range of substituents (alkyl, aryl, phosphinyl, alkoxycarbonyl, sulfonyl) at the cumulenic C3 position were prepared by using a diverse range of synthetic strategies and converted into their respective 1-(2-hydroxy)-ethoxy-2-substituted naphthalenes by smooth thermal activation in toluene solution. Electron-withdrawing groups at the C3 position accelerated these tandem processes, which consisted of 1) an initial hydride-like [1,5]-H shift of the acetalic H atom onto the central cumulene carbon atom; 2) a subsequent 6π-electrocyclic ring-closure of the resulting reactive ortho-xylylenes; and 3) a final aromatization step with concomitant ring-opening of the 1,3-dioxolane fragment. If the 1,3-dioxolane ring of the starting allenes was replaced by a dimethoxymethyl group, the reactions led to mixtures of two disubstituted naphthalenes, which were formed by the migration of either the acetalic H atom or the methoxy group, with the latter migration occurring to a lesser extent.
View Article and Find Full Text PDFA number of N-aryl ketenimines, substituted at the ortho position either with different non-cyclic acetalic functions (acetals, monothioacetals, dithioacetals) or with only one alkoxymethyl or (alkylthio)methyl group, have been prepared and submitted to thermal treatment in toluene solution. Under smooth heating the ketenimines bearing non-cyclic acetals converted into 3,4-dihydroquinolines following two competitive tandem sequences that involve the alternative 1,5 migration of a hydride or alkoxy group as the first mechanistic step, followed by subsequent 6π electrocyclic ring closure. The heterocumulenes bearing acyclic monothioacetal and dithioacetal functions converted via a unique consecutive process involving the selective migration of the alkanethiolate group.
View Article and Find Full Text PDFN-(2-azidomethyl)phenyl ketenimines and N-(2-azidomethyl)phenyl-N'-alkyl(aryl) carbodiimides undergo, under mild thermal conditions, intramolecular [3 + 2] cycloaddition reactions between the azido group and either the C=C or the distal C=N double bonds of the ketenimine and carbodiimide functions respectively. The reaction products are indolo[1,2-a]quinazolines and/or indolo[2,1-b]quinazolines in the case of azido-ketenimines, and tetrazolo[5,1-b]quinazolines in the case of azido-carbodiimides. The formation of the two classes of indoloquinazolines implies the ulterior dinitrogen extrusion from the non-isolated, putative [3 + 2] cycloadducts between the azide and ketenimine functions, whereas in the case of azido-carbodiimides the initial cycloadducts, tetrazoloquinazolines, were cleanly isolated and further converted into 2-aminoquinazolines by thermally induced dinitrogen extrusion.
View Article and Find Full Text PDFAims: This paper is a report of a study to assess the feasibility and efficacy of a programme of nurse management for patients requesting same day consultation for minor illnesses in primary care.
Background: The efficacy of such programmes has been demonstrated in randomized studies but there is little information on these programmes in highly populated areas.
Methods: Patients seeking same day consultation for one of 23 preselected minor illnesses (16 for adults, 7 for paediatric patients) from March 2009 to April 2010 were seen by trained nurses who followed predefined algorithms.
The ability of triarylmethane and diarylmethane fragments to behave as hydride donors participating in thermal [1,5]-H shift/6π-ERC tandem processes involving ketenimine and carbodiimide functions is disclosed. C-Alkyl-C-phenyl ketenimines N-substituted by a triarylmethane substructure convert into a variety of 3,3,4,4-tetrasubstituted-3,4-dihydroquinolines, as structurally related carbodiimides transform into 3,4,4-trisubstituted-3,4-dihydroquinazolines via transient ortho-azaxylylenes. The first step of these one-pot conversions, the [1,5]-H shift, is considered to be a hydride migration on the basis of the known hydricity of the tri(di)arylmethane fragment and the electrophilicity of the central heterocumulenic carbon atom, whereas the final electrocyclization involves the formation of a sterically congested C-C or C-N bond.
View Article and Find Full Text PDFUnder thermal activation in solution, N-[2-(1,3-oxathiolan-2-yl)]phenyl ketenimines and carbodiimides were converted into 2,1-benzisothiazol-3-ones bearing a pendant N-styryl or imidoyl fragment, respectively. These processes should occur with the concomitant formation of ethylene as result of the fragmentation of the 1,3-oxathiolane ring. The conversions of ketenimines took place under softer thermal conditions, toluene 110 degrees C, than those of carbodiimides, o-xylene 160 degrees C.
View Article and Find Full Text PDFC,C,N-Triaryl ketenimines and C-alkyl-C,N-diaryl ketenimines react with 2 equiv of PTAD to provide 1,2,4-triazolo[1,2-a]cinnolines with a pendant triazolidindione group by means of a Diels-Alder/ene sequence. The treatment of such adducts with potassium hydroxide affords 3-aminocinnolines.
View Article and Find Full Text PDFA rare one-pot reaction, a tandem [1,5]-H shift/1,5 electrocyclization/[3 + 2] cycloreversion process, leading from N-[2-(1,3-oxathiolan-2-yl)]phenyl ketenimines to 1-(beta-styryl)-2,1-benzisothiazol-3-ones and ethylene, is disclosed and mechanistically unraveled by means of a computational DFT study. The two latter stages of the tandem process are calculated to occur in a single mechanistic step via a transition structure of pseudopericyclic characteristics.
View Article and Find Full Text PDFBis(ketenimines) and bis(carbodiimides) derived from 1,4-bis(2-aminophenyl)-1,3-butadiynes via two independent biradical cyclizations provided, respectively, axially chiral bis(benzocarbazoles) and bis(quinindolines). Mixed biheteroaryls, consisting of benzocarbazole and quinindoline units, have been also prepared by a slightly modified strategy.
View Article and Find Full Text PDFBis(ketenimines), in which the two heterocumulenic functions are placed in close proximity on a carbon skeleton to allow their mutual interaction, show a rich and not easily predictable chemistry. Intramolecular [2 + 2] or [4 + 2] cycloadditions are, respectively, observed when both ketenimine functions are supported on either ortho-benzylic or 2,2'-biphenylenic scaffolds. In addition, nitrogen-to-carbon [1,3] and [1,5] shifts of arylmethyl groups in N-arylmethyl-C,C-diphenyl ketenimines are also disclosed.
View Article and Find Full Text PDF2-monosubstituted 1,3-dioxolanes and dithiolanes act as hydride-releasing fragments, transferring intramolecularly their acetalic H atom to the central carbon of ketenimine functions. The presumed products of these migrations, o-quinomethanimines, undergo in situ 6pi-electrocyclization. A computational study supports this mechanism and the hydride-shift character of the first step.
View Article and Find Full Text PDFN-(2-X-Carbonyl)phenyl ketenimines undergo, under mild thermal conditions, [1,5]-migration of the X group from the carbonyl carbon to the electron-deficient central carbon atom of the ketenimine fragment, followed by a 6pi-electrocyclic ring closure of the resulting ketene to provide 2-X-substituted quinolin-4(3H)-ones in a sequential one-pot manner. The X groups tested are electron-donor groups, such as alkylthio, arylthio, arylseleno, aryloxy, and amino. When involving alkylthio, arylthio, and arylseleno groups, the complete transformation takes place in refluxing toluene, whereas for aryloxy and amino groups the starting ketenimines must be heated at 230 degrees C in a sealed tube in the absence of solvent.
View Article and Find Full Text PDF[reaction: see text] N-[2-(Alkyl- or arylthio)carbonyl]phenyl ketenimines undergo cyclization under mild thermal conditions to afford 2-alkyl(aryl)thio-3H-quinolin-4-ones by means of the 1,5-migration of the alkyl(aryl)thio group from the carbonyl carbon to the central carbon atom of the ketenimine fragment followed by the 6pi-electrocyclization of the resulting vinyliminoketene. These 1,5-migration and electrocyclization processes occur via transition states whose pseudopericyclic characteristics have been established on the basis of their magnetic properties, geometries, and NBO analyses.
View Article and Find Full Text PDF[reaction: see text] The mode selectivity in the intramolecular cyclization of a particular class of ketenimines bearing N-acylimino units has been studied by ab initio and DFT calculations. In the model compounds the carbonyl carbon atom and the keteniminic nitrogen atom are linked either by a vinylic or an o-phenylene tether. Two cyclization modes have been analyzed: the [2+2] cycloaddition furnishing compounds with an azeto[2,1-b]pyrimidinone moiety and a 6pi-electrocyclic ring closure leading to compounds enclosing a 1,3-oxazine ring.
View Article and Find Full Text PDFThe inter- and intramolecular addition of free radicals onto ketenimines is studied. All the attempts to add intermolecularly several silicon, oxygen or carbon centered radicals to N-(4-methylphenyl)-C,C-diphenyl ketenimine were unsuccessful. In contrast, the intramolecular addition of benzylic radicals, generated from xanthates, onto the central carbon of a ketenimine function with its N atom linked to the ortho position of the aromatic ring occurred under a variety of reaction conditions.
View Article and Find Full Text PDF