Publications by authors named "Angel Rivera-Colon"

The Antarctic bald notothen, Trematomus borchgrevinki (family Nototheniidae) occupies a high latitude, ice-laden environment and represents an extreme example of cold-specialization among fishes. We present the first, high-quality, chromosome-scale genome of a female T. borchgrevinki individual comprised of 23 putative chromosomes, the largest of which is 65 megabasepairs (Mbp) in length.

View Article and Find Full Text PDF

Hybrid zones are dynamic systems where natural selection, sexual selection, and other evolutionary forces can act on reshuffled combinations of distinct genomes. The movement of hybrid zones, individual traits, or both are of particular interest for understanding the interplay between selective processes. In a hybrid zone involving two lek-breeding birds, secondary sexual plumage traits of Manacus vitellinus, including bright yellow collar and olive belly color, have introgressed ~50 km asymmetrically across the genomic center of the zone into populations more genetically similar to Manacus candei.

View Article and Find Full Text PDF

Cape lions (Panthera leo melanochaitus) formerly ranged throughout the grassland plains of the "Cape Flats" in what is today known as the Western Cape Province, South Africa. Cape lions were likely eradicated because of overhunting and habitat loss after European colonization. European naturalists originally described Cape lions as "black-maned lions" and claimed that they were phenotypically distinct.

View Article and Find Full Text PDF

Environmental change is intensifying the biodiversity crisis and threatening species across the tree of life. Conservation genomics can help inform conservation actions and slow biodiversity loss. However, more training, appropriate use of novel genomic methods and communication with managers are needed.

View Article and Find Full Text PDF

The basal South American notothenioid (Patagonia blennie or róbalo) occupies a uniquely important phylogenetic position in Notothenioidei as the singular closest sister species to the Antarctic cryonotothenioid fishes. Its genome and the traits encoded therein would be the nearest representatives of the temperate ancestor from which the Antarctic clade arose, providing an ancestral reference for deducing polar derived changes. In this study, we generated a gene- and chromosome-complete assembly of the genome using long read sequencing and HiC scaffolding.

View Article and Find Full Text PDF

Library preparation protocols for most sequencing technologies involve PCR amplification of the template DNA, which open the possibility that a given template DNA molecule is sequenced multiple times. Reads arising from this phenomenon, known as PCR duplicates, inflate the cost of sequencing and can jeopardize the reliability of affected experiments. Despite the pervasiveness of this artefact, our understanding of its causes and of its impact on downstream statistical analyses remains essentially empirical.

View Article and Find Full Text PDF

White-blooded Antarctic icefishes, a family within the adaptive radiation of Antarctic notothenioid fishes, are an example of extreme biological specialization to both the chronic cold of the Southern Ocean and life without hemoglobin. As a result, icefishes display derived physiology that limits them to the cold and highly oxygenated Antarctic waters. Against these constraints, remarkably one species, the pike icefish Champsocephalus esox, successfully colonized temperate South American waters.

View Article and Find Full Text PDF

Nuclear mitochondrial pseudogenes (numts) may hinder the reconstruction of mtDNA genomes and affect the reliability of mtDNA datasets for phylogenetic and population genetic comparisons. Here, we present the program Numt Parser, which allows for the identification of DNA sequences that likely originate from numt pseudogene DNA. Sequencing reads are classified as originating from either numt or true cytoplasmic mitochondrial (cymt) DNA by direct comparison against cymt and numt reference sequences.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the evolutionary patterns of insular plants, highlighting changes in leaf traits, growth, and the shift to perennial lifestyles known as 'plant island syndrome.'
  • Researchers sequenced the genome of the endangered Galápagos species Scalesia atractyloides, revealing a detailed genetic structure that indicates it is an allotetraploid with two ancestral genomes.
  • The analysis identifies genetic adaptations related to key traits such as vascular development, salinity resistance, and flowering time, supporting the idea of a genomic foundation for the unique adaptations seen in island species.
View Article and Find Full Text PDF

Restriction enzymes have been one of the primary tools in the population genetics toolkit for 50 years, being coupled with each new generation of technology to provide a more detailed view into the genetics of natural populations. Restriction site-Associated DNA protocols, which joined enzymes with short-read sequencing technology, have democratized the field of population genomics, providing a means to assay the underlying alleles in scores of populations. More than 10 years on, the technique has been widely applied across the tree of life and served as the basis for many different analysis techniques.

View Article and Find Full Text PDF

Sensory systems allow for the transfer of environmental stimuli into internal cues that can alter physiology and behavior. Many studies of visual systems focus on opsins to compare spectral sensitivity among individuals, populations, and species living in different lighting environments. This requires an understanding of the cone opsins, which can be numerous.

View Article and Find Full Text PDF

Morphologically similar species, that is cryptic species, may be similar or quasi-similar owing to the deceleration of morphological evolution and stasis. While the factors underlying the deceleration of morphological evolution or stasis in cryptic species remain unknown, decades of research in the field of paleontology on punctuated equilibrium have originated clear hypotheses. Species are expected to remain morphologically identical in scenarios of shared genetic variation, such as hybridization and incomplete lineage sorting, or in scenarios where bottlenecks reduce genetic variation and constrain the evolution of morphology.

View Article and Find Full Text PDF

Restriction-site associated DNA sequencing (RADseq) has become a powerful and versatile tool in modern population genomics, enabling large-scale evolutionary and genomic analyses in otherwise inaccessible biological systems. With its widespread use, different variants on the protocol have been developed to suit specific experimental needs. Researchers face the challenge of choosing the optimal molecular and sequencing protocols for their reduced representation experimental design, an often-complicated process.

View Article and Find Full Text PDF

The underlying genetic changes that regulate the appearance and disappearance of repeated traits, or serial homologs, remain poorly understood. One hypothesis is that variation in genomic regions flanking master regulatory genes, also known as input-output genes, controls variation in trait number, making the locus of evolution almost predictable. Another hypothesis implicates genetic variation in up- or downstream loci of master control genes.

View Article and Find Full Text PDF

For half a century population genetics studies have put type II restriction endonucleases to work. Now, coupled with massively-parallel, short-read sequencing, the family of RAD protocols that wields these enzymes has generated vast genetic knowledge from the natural world. Here, we describe the first software natively capable of using paired-end sequencing to derive short contigs from de novo RAD data.

View Article and Find Full Text PDF