Publications by authors named "Angel Pech-Canul"

Many anaerobic microorganisms use the bifunctional aldehyde and alcohol dehydrogenase enzyme, AdhE, to produce ethanol. One such organism is Clostridium thermocellum, which is of interest for cellulosic biofuel production. In the course of engineering this organism for improved ethanol tolerance and production, we observed that AdhE was a frequent target of mutations.

View Article and Find Full Text PDF

Clostridium thermocellum is a natively cellulolytic bacterium that is promising candidate for cellulosic biofuel production, and can produce ethanol at high yields (75-80% of theoretical) but the ethanol titers produced thus far are too low for commercial application. In several strains of C. thermocellum engineered for increased ethanol yield, ethanol titer seems to be limited by ethanol tolerance.

View Article and Find Full Text PDF

FadD is an acyl-coenzyme A (CoA) synthetase specific for long-chain fatty acids (LCFA). Strains mutated in fadD cannot produce acyl-CoA and thus cannot grow on exogenous LCFA as the sole carbon source. Mutants in the fadD (smc02162) of Sinorhizobium meliloti are unable to grow on oleate as the sole carbon source and present an increased surface motility and accumulation of free fatty acids at the entry of the stationary phase of growth.

View Article and Find Full Text PDF

Manganese peroxidases (MnP) from the white-rot fungi catalyse the oxidation of Mn to Mn, a strong oxidizer able to oxidize a wide variety of organic compounds. Different approaches have been used to unravel the enzymatic properties and potential applications of MnP. However, these efforts have been hampered by the limited production of native MnP by fungi.

View Article and Find Full Text PDF

Surface motility and biofilm formation are behaviours which enable bacteria to infect their hosts and are controlled by different chemical signals. In the plant symbiotic alpha-proteobacterium Sinorhizobium meliloti, the lack of long-chain fatty acyl-coenzyme A synthetase activity (FadD) leads to increased surface motility, defects in biofilm development and impaired root colonization. In this study, analyses of lipid extracts and volatiles revealed that a fadD mutant accumulates 2-tridecanone (2-TDC), a methylketone (MK) known as a natural insecticide.

View Article and Find Full Text PDF

is the causal agent of Chagas' disease which affects millions of people around the world mostly in Central and South America. expresses a wide variety of proteins on its surface membrane which has an important role in the biology of these parasites. Surface molecules of the parasites are the result of the environment to which the parasites are exposed during their life cycle.

View Article and Find Full Text PDF

FadD is an acyl coenzyme A (CoA) synthetase responsible for the activation of exogenous long-chain fatty acids (LCFA) into acyl-CoAs. Mutation of fadD in the symbiotic nitrogen-fixing bacterium Sinorhizobium meliloti promotes swarming motility and leads to defects in nodulation of alfalfa plants. In this study, we found that S.

View Article and Find Full Text PDF