Publications by authors named "Angel Palomo"

Magnesium phosphate cements (MPCs), also known as chemically bonded ceramics, represent a class of inorganic cements that have garnered considerable interest in recent years for their exceptional properties and diverse applications in the construction and engineering sectors. However, the development of these cements is relatively recent (they emerged at the beginning of the 20th century), so there are still certain aspects relating to their durability that need to be evaluated. The present work analyses the chemical durability of magnesium potassium phosphate cements (MKPCs) during 1 year of immersion in three leaching media: seawater, a NaSO solution (4% by mass) and deionized water.

View Article and Find Full Text PDF

The present work evaluates the feasibility of using volcanic fly ash (VFA) generated by the eruption of the Tajogaite volcano on the island of La Palma (Spain) in 2021, as a precursor in the preparation of cementitious materials with different Portland cement (PC) replacement levels (0%, 30%, 70% and 100%), in the absence (Blended Cement, BC) and presence of an alkaline activator (Hybrid Alkaline Cement, HAC, and Alkaline Cements, AC). Hydration kinetics (isothermal conduction calorimetry), paste mechanical strengths and reaction products were characterised by XRD, FTIR, TG/DTG and BSEM/EDX. The results obtained indicate that the strengths developed by the hybrid alkaline cements (HAC) are higher than those of the blended cements (BC), especially at the age of 2 days, where 25 MPa were obtained with the replacement of 70% PC by VFA.

View Article and Find Full Text PDF

This paper examined how the amount (5% or 20%) and type (CaSO or NaSO) of sulphate salt affect the hydration of calcium sulphoaluminate clinker (KCSA). The mechanical behavior of the pastes was determined at 1, 3, 28, and 90 days, the heat flow and total heat were measured with isothermal conduction calorimetry, and the reaction products were characterized using X-ray diffraction (XRD), differential thermal analysis/thermogravimetry (DTA/TG) and scanning electron microscopy (SEM). The results obtained indicated that both the amount of sulphate salt (5% or 20%) and its type (CaSO or NaSO) affect the hydration kinetics, type of reaction products formed, and development of mechanical strength.

View Article and Find Full Text PDF

This work deals with the investigation of alkaline binders obtained from binary mixtures of carbonate-rich illitic clay from deposits in southern Italy and two industrial by-products with very different total composition and calcium content, i.e., blast furnace slag and type F fly ash, respectively.

View Article and Find Full Text PDF

Unlabelled: Many (inter)national standards exist to evaluate the resistance of mortar and concrete to carbonation. When a carbonation coefficient is used for performance comparison of mixtures or service life prediction, the applied boundary conditions during curing, preconditioning and carbonation play a crucial role, specifically when using latent hydraulic or pozzolanic supplementary cementitious materials (SCMs). An extensive interlaboratory test (ILT) with twenty two participating laboratories was set up in the framework of RILEM TC 281-CCC 'Carbonation of Concrete with SCMs'.

View Article and Find Full Text PDF

This work analyzes the effect of the presence of 5 wt.% of solid sodium salts (NaSO, NaCO, and NaSiO) on calcium sulfoaluminate cement (CSA) hydration, addresses hydration kinetics; 2-, 28-, and 90-d mechanical strength, and reaction product microstructure (with X-ray diffraction (XRD), and Fourier transform infrared spectroscopy, (FTIR). The findings show that the anions affect primarily the reactions involved.

View Article and Find Full Text PDF

The physical and mechanical characteristics of expanded-clay lightweight concrete based on a supersulfated binder in comparison with lightweight concrete based on ordinary Portland cement were studied. In replacing CEM 32.5 with a supersulfated binder of 6000 cm/g specific surface, one can increase the tensile strength in bending up to 20% and can increase the ratio of the tensile strength in bending to the compressive strength that indicates the crack resistance increase of concrete.

View Article and Find Full Text PDF

In hybrid alkaline fly ash cements, a new generation of binders, hydration, is characterized by features found in both ordinary portland cement (OPC) hydration and the alkali activation of fly ash (AAFA). Hybrid alkaline fly ash cements typically have a high fly ash (70 wt % to 80 wt %) and low clinker (20 wt % to 30 wt %) content. The clinker component favors curing at ambient temperature.

View Article and Find Full Text PDF

This paper presents total and soluble Mercury contents for three coal fly ashes and alkali-activated fly ash (AAFA) cements consisting of 100% fly ash as starting material. To evaluate the potential of the AAFA cement matrix to immobilise Hg from an external source, another batch of cements, doped with 5000 mg/kg Hg as highly soluble HgCl(2), was prepared. The ashes and control AAFA cements complied with Mercury leaching criteria for non-hazardous wastes according to both TCLP and EN 12457 tests.

View Article and Find Full Text PDF