Publications by authors named "Angel Padilla"

Although parasite entry through breaks in the skin or mucosa is one of the main routes of natural transmission of Trypanosoma cruzi, little is known about the host cell types initially invaded nor the ability of those host cells to initiate immune responses at the site of infection. To gain insights into these early events, we studied the fate of fluorescently tagged T. cruzi delivered subcutaneously in mouse footpads or ears.

View Article and Find Full Text PDF

Objective: The aim of this study was to estimate the direct medical cost per episode and the annual cost for acute diarrhea (AD) in children under five years of age in Ambulatory Care Centers of the Ministry of Public Health (MOPH) of Ecuador.

Methods: A cost of illness study with a provider perspective was carried out through a micro-costing of health resources and valuated in international dollars. Medical consultations and laboratory tests were valued using the tariff framework of services for the National Health System and for the prescribed medications, a reported cost registry of pharmacy purchases made in the year of study was used.

View Article and Find Full Text PDF

Trypanosoma cruzi naturally infects a wide variety of wild and domesticated mammals, in addition to humans. Depending on the infection dose and other factors, the acute infection can be life-threatening, and in all cases, the risk of chagasic heart disease is high in persistently infected hosts. Domestic, working, and semi-feral dogs in the Americas are at significant risk of T.

View Article and Find Full Text PDF

Trypanosoma cruzi, the agent of Chagas disease, probably infects tens of millions of people, primarily in Latin America, causing morbidity and mortality. The options for treatment and prevention of Chagas disease are limited and underutilized. Here we describe the discovery of a series of benzoxaborole compounds with nanomolar activity against extra- and intracellular stages of T.

View Article and Find Full Text PDF

Crimean-Congo hemorrhagic fever (CCHF) is a medically relevant tick-borne viral disease caused by the Bunyavirus, Crimean-Congo hemorrhagic fever virus (CCHFV). CCHFV is endemic to Asia, the Middle East, South-eastern Europe, and Africa and is transmitted in enzootic cycles among ticks, mammals, and birds. Human infections are mostly subclinical or limited to mild febrile illness.

View Article and Find Full Text PDF

Chagas disease is a neglected pathology that affects millions of people worldwide, mainly in Latin America. The Chagas disease agent, Trypanosoma cruzi (T. cruzi), is an obligate intracellular parasite with a diverse biology that infects several mammalian species, including humans, causing cardiac and digestive pathologies.

View Article and Find Full Text PDF

Trypanosoma cruzi, the causative agent of human Chagas disease, is endemic to the southern region of the United States where it routinely infects many host species. The indoor/outdoor housing configuration used in many non-human primate research and breeding facilities in the southern of the USA provides the opportunity for infection by T. cruzi and thus provides source material for in-depth investigation of host and parasite dynamics in a natural host species under highly controlled and restricted conditions.

View Article and Find Full Text PDF

A major contributor to treatment failure in Chagas disease, caused by infection with the protozoan parasite , is that current treatment regimens do not address the drug insensitivity of transiently dormant amastigotes. Here, we demonstrated that use of a currently available drug in a modified treatment regimen of higher individual doses, given less frequently over an extended treatment period, could consistently extinguish infection in three mouse models of Chagas disease. Once per week administration of benznidazole at a dose 2.

View Article and Find Full Text PDF

The aim of this study was to investigate the effects of probiotics on pre-weaning performance, muscle, and fat deposition and serum metabolite profiles in male and female Senepol calves. Thirty new-born Senepol calves, 15 males and 15 females, were randomly allocated to the following treatments: CON a control group that received the basal creep feeding diet and PRO animals that received the basal diet with addition of 2 g/100 kg of body weight (BW) of probiotic. PRO supplementation did not change the DMI but increased average BW, final BW, ADG relative to animals fed CON.

View Article and Find Full Text PDF

Acylaminobenzothiazole hits were identified as potential inhibitors of replication, a parasite responsible for Chagas disease. We selected compound for lead optimization, aiming to improve in parallel its anti- activity (IC = 0.63 μM) and its human metabolic stability (human clearance = 9.

View Article and Find Full Text PDF

Chagas disease agent, Trypanosoma cruzi, is capable to persist after prolonged drug treatment using effective drugs. The reason of treatment failure is not known, but recent development of highly sensible bioluminescence imaging coupled to tissue clarification techniques has made possible the detection of individual amastigotes within chronically infected murine tissues and the study of their replicative status. In this chapter, we provide a step-by-step explanation for these protocols that allowed the visualization of nonproliferating amastigotes in tissues of chronically infected mice for the first time.

View Article and Find Full Text PDF

The ability of the Chagas disease agent to resist extended in vivo exposure to highly effective trypanocidal compounds prompted us to explore the potential for dormancy and its contribution to failed drug treatments in this infection. We document the development of non-proliferating intracellular amastigotes in vivo and in vitro in the absence of drug treatment. Non-proliferative amastigotes ultimately converted to trypomastigotes and established infections in new host cells.

View Article and Find Full Text PDF

The parasite is the causative agent of Chagas disease, a potentially life-threatening infection that represents a major health problem in Latin America. Several characteristics of this protozoan contribute to the lack of an effective vaccine, among them: its silent invasion mechanism, antigen redundancy and immunodominance without protection. Taking into account these issues, we engineered Traspain, a chimeric antigen tailored to present a multivalent display of domains from key parasitic molecules, combined with stimulation of the STING pathway by c-di-AMP as a novel prophylactic strategy.

View Article and Find Full Text PDF

The biological behavior of the different Trypanosoma cruzi strains is still unclear and the importance of exploring the relevance of these differences in natural isolates is of great significance. Herein we describe the biological behavior of four T. cruzi isolates circulating sympatrically in a restricted geographic area in Argentina endemic for Chagas Disease.

View Article and Find Full Text PDF

Background: Trypanosoma cruzi is a protozoan parasite that causes severe disease in millions of habitants of developing countries. Currently there is no vaccine to prevent this disease and the available drugs have the consequences of side effects. Live vaccines are likely to be more effective in inducing protection than recombinant proteins or DNA vaccines; however, safety problems associated to their use have been pointed out.

View Article and Find Full Text PDF

Background: The two available drugs for treatment of T. cruzi infection, nifurtimox and benznidazole (BZ), have potential toxic side effects and variable efficacy, contributing to their low rate of use. With scant economic resources available for antiparasitic drug discovery and development, inexpensive, high-throughput and in vivo assays to screen potential new drugs and existing compound libraries are essential.

View Article and Find Full Text PDF

Upon infection, Trypanosoma cruzi triggers a strong immune response that has both protective and pathological consequences. In this work, several important questions regarding protective immunity are reviewed. Emphasis is placed on recent studies of the important protective role of CD8+ T cells and on previous studies of immunisation of domestic T.

View Article and Find Full Text PDF

CD8(+) T cells have emerged as crucial players in the control of a number of protozoan pathogens, including Trypanosoma cruzi, the agent of human Chagas disease. The recent identification of the dominant targets of T. cruzi-specific T cells has allowed investigators to follow the generation of and document the functionality of T cell responses in both mice and humans.

View Article and Find Full Text PDF

During experimental infection with Trypanosoma cruzi, mice develop a strong CD8(+) T cell response focused mainly on a few immunodominant peptides encoded in trans-sialidase family genes. Despite the potency of this response, the initial emergence and peak of parasite-specific CD8(+) T cells has been noted to be relatively slow. In this study, we further document this delayed onset of T cell responses to T.

View Article and Find Full Text PDF

Immune control of the protozoan parasite Trypanosoma cruzi requires the activation of both CD4+ and CD8+ T cells. We recently identified two T. cruzi trans-sialidase peptides that are targets of approximately 30% of all CD8+ T cells during acute T.

View Article and Find Full Text PDF

Although Trypanosoma cruzi virulence can be modified through passages in vivo or long-term in vitro culture, the mechanisms involved are poorly understood. Here we report modifications in the infectivity of a T. cruzi clone after passages in different hosts without detectable changes in parasite genetic patterns.

View Article and Find Full Text PDF

We studied the seroprevalence of antibodies against Trypanosoma cruzi in the human population along with domiciliary infestation by triatomine bugs in an area endemic for Chagas disease in the Chaco Province of Argentina. In addition, we carried out parasitologic surveys in patients, dogs, wild mammals, and vectors. The mean seroprevalence in humans was 27.

View Article and Find Full Text PDF

A set of 65 Trypanosoma cruzi stocks from dogs, opossums, insect vectors and humans was isolated in a geographically restricted endemic area for Chagas' disease in Argentina and was analysed by multilocus enzyme electrophoresis for 15 loci. The results show that at least five multilocus genotypes (clonets) circulate in the study area, one belonging to T. cruzi IIe, one to T.

View Article and Find Full Text PDF

The infective behavior of a mutant Trypanosoma cruzi clone, carrying a targeted deletion of the gp72 gene, was studied in the insect vector Triatoma infestans and in mice. After feeding T. infestans with complement-resistant forms (CRF) of Ynull and wild-type clones, it was observed that the number of parasites released in the bug's feces was reduced to less than 1% in the mutant clone.

View Article and Find Full Text PDF