In this work, we report on a twin-core fiber sensor system that provides improved spectral efficiency, allows for multiplexing and gives low level of crosstalk. Pieces of the referred strongly coupled multicore fiber are used as sensors in a laser cavity incorporating a pulsed semiconductor optical amplifier (SOA). Each sensor has its unique cavity length and can be addressed individually by electrically matching the periodic gating of the SOA to the sensor's cavity roundtrip time.
View Article and Find Full Text PDFOptical fiber-based Localized Surface Plasmon Resonance (OF-LSPR) biosensors have emerged as an ultra-sensitive miniaturized tool for a great variety of applications. Their fabrication by the chemical immobilization of gold nanoparticles (AuNPs) on the optic fiber end face is a simple and versatile method. However, it can render poor reproducibility given the number of parameters that influence the binding of the AuNPs.
View Article and Find Full Text PDFBare and gold-coated tilted fiber Bragg gratings (TFBGs) can nowadays be considered as a mature technology for volume and surface refractometric sensing, respectively. As for other technologies, a continuous effort is made towards the production of even more sensitive sensors, thereby enabling a high-resolution screening of the surroundings and the possible detection of rare events. To this aim, we study in this work the development of TFBG refractometers in 4-core fibers.
View Article and Find Full Text PDFWe propose and demonstrate a compact and simple vector bending sensor capable of distinguishing any direction and amplitude with high accuracy. The sensor consists of a short segment of asymmetric multicore fiber (MCF) fusion spliced to a standard single mode fiber. The reflection spectrum of such a structure shifts and shrinks in specific manners depending on the direction in which the MCF is bent.
View Article and Find Full Text PDFWe report on a compact, highly sensitive all-fiber accelerometer suitable for low frequency and low amplitude vibration sensing. The sensing elements in the device are two short segments of strongly coupled asymmetric multicore fiber (MCF) fusion spliced at 180° with respect to each other. Such segments of MCF are sandwiched between standard single mode fibers.
View Article and Find Full Text PDFThis work reports a novel method to create a 3D map of the refractive index of different graded-index polymer optical fibers (GI-POF), measuring the Raman spectra at different points of their transverse sections. Raman fingerprints provide accurate molecular information of the sample with high spatial resolution. The refractive index of GI-POFs is modified by adding a dopant in the preform; therefore, by recording the intensities of the Raman peaks related to the dopant material, a 3D map of the refractive index is rendered.
View Article and Find Full Text PDFThe facet of optical fibers coated with nanostructures enables the development of ultraminiature and sensitive (bio)chemical sensors. The sensors reported until now lack specificity, and the fabrication methods offer poor reproducibility. Here, we demonstrate that by transforming the facet of conventional multimode optical fibers onto plasmon resonance energy transfer antenna surfaces, the specificity issues may be overcome.
View Article and Find Full Text PDF