Despite considerable documentation of the ability of normal bone to adapt to its mechanical environment, very little is known about the response of bone grafts or their substitutes to mechanical loading even though many bone defects are located in load-bearing sites. The goal of this research was to quantify the effects of controlled in vivo mechanical stimulation on the mineralization of a tissue-engineered bone replacement and identify the tissue level stresses and strains associated with the applied loading. A novel subcutaneous implant system was designed capable of intermittent cyclic compression of tissue-engineered constructs in vivo.
View Article and Find Full Text PDFInteractions between bone and cartilage formation are critical during growth and fracture healing and may influence the functional integration of osteochondral repair constructs. In this study, the ability of tissue-engineered cartilage constructs to support bone formation under controlled mechanical loading conditions was evaluated using a lapine hydraulic bone chamber model. Articular chondrocytes were seeded onto polymer disks, cultured for 4 weeks in vitro, and then transferred to empty bone chambers previously implanted into rabbit femoral metaphyses.
View Article and Find Full Text PDF