Publications by authors named "Angel Mozo-Villarias"

The interactions that give rise to protein self-assembly are basically electrical and hydrophobic in origin. The electrical interactions are approached in this study as the interaction between electrostatic dipoles originated by the asymmetric distribution of their charged amino acids. However, hydrophobicity is not easily derivable from basic physicochemical principles.

View Article and Find Full Text PDF
Article Synopsis
  • - Moonlighting proteins are single polypeptide chains that have evolved to perform multiple functions, with over 78% linked to human diseases and many being potential drug targets.
  • - These proteins can activate different functions under pathological conditions, either promoting or combating diseases, particularly in processes like inflammation and cancer.
  • - Understanding the specific roles of moonlighting proteins in disease progression is crucial for developing effective treatments, as their functions can impact a patient's health in complex ways.
View Article and Find Full Text PDF

Moonlighting and multitasking proteins refer to proteins with two or more functions performed by a single polypeptide chain. An amazing example of the Gain of Function (GoF) phenomenon of these proteins is that 25% of the moonlighting functions of our Multitasking Proteins Database (MultitaskProtDB-II) are related to pathogen virulence activity. Moreover, they usually have a canonical function belonging to highly conserved ancestral key functions, and their moonlighting functions are often involved in inducing extracellular matrix (ECM) protein remodeling.

View Article and Find Full Text PDF

Hydrophobic forces play a crucial role in both the stability of B DNA and its interactions with proteins. In the present study, we postulate that the hydrophobic effect is an essential component in establishing specificity in the interaction transcription factor proteins with their consensus DNA sequence partners. The PDB coordinates of more than 50 transcription systems have been used to analyze the hydrophobic attraction of proteins towards their DNA consensus.

View Article and Find Full Text PDF

Protein self-assembling is studied under the light of the Biological Membrane model. To this purpose we define a simplified formulation of hydrophobic interaction energy in analogy with electrostatic energy stored in an electric dipole. Self-assembly is considered to be the result of the balanced influence of electrostatic and hydrophobic interactions, limited by steric hindrance as a consequence of the relative proximity of their components.

View Article and Find Full Text PDF

Multifunctionality or multitasking is the capability of some proteins to execute two or more biochemical functions. The objective of this work is to explore the relationship between multifunctional proteins, human diseases and drug targeting. The analysis of the proportion of multitasking proteins from the MultitaskProtDB-II database shows that 78% of the proteins analyzed are involved in human diseases.

View Article and Find Full Text PDF

Moonlighting or multitasking proteins refer to those proteins with two or more functions performed by a single polypeptide chain. Proteins that belong to key ancestral functions and metabolic pathways such as primary metabolism typically exhibit moonlighting phenomenon. We have collected 698 moonlighting proteins in MultitaskProtDB-II database.

View Article and Find Full Text PDF

Multitasking, or moonlighting, is the capability of some proteins to execute two or more biological functions. MultitaskProtDB-II is a database of multifunctional proteins that has been updated. In the previous version, the information contained was: NCBI and UniProt accession numbers, canonical and additional biological functions, organism, monomeric/oligomeric states, PDB codes and bibliographic references.

View Article and Find Full Text PDF

This article describes the formation of homodimers from their constituting monomers, based on the rules set by a simple model of electric and hydrophobic interactions. These interactions are described in terms of the electric dipole moment (D) and hydrophobic moment vectors (H) of proteins. The distribution of angles formed by the two dipole moments of monomers constituting dimers were analysed, as well as the distribution of angles formed by the two hydrophobic moments.

View Article and Find Full Text PDF

The propensity of many proteins to oligomerize and associate to form complex structures from their constituent monomers, is analyzed in terms of their hydrophobic (H), and electric pseudo-dipole (D) moment vectors. In both cases these vectors are defined as the product of the distance between their positive and negative centroids, times the total hydrophobicity or total positive charge of the protein. Changes in the magnitudes and directions of H and D are studied as monomers associate to form larger complexes.

View Article and Find Full Text PDF

We have compiled MultitaskProtDB, available online at http://wallace.uab.es/multitask, to provide a repository where the many multitasking proteins found in the literature can be stored.

View Article and Find Full Text PDF

The eukaryotic microorganism Saccharomyces cerevisiae is a current model system in which to study the signal transduction pathways involved in the oxidative stress response. In this review we present the current evidence demonstrating that in S. cerevisiae several MAPK and signalling routes participate in this response (PKC1-MAPK, TOR, RAS-PKA-cAMP).

View Article and Find Full Text PDF

We have used fluorescence recovery after photobleaching to study the effect of muscle alpha-actinin on the structure of actin filaments in dilute solutions. Unexpectedly we found that alpha-actinin partitioned filaments into two types: those with a high mobility and those with low mobility. We have determined that the high mobility (smaller sized) population is too large to be simple monomeric actin:alpha-actinin complexes.

View Article and Find Full Text PDF

In this work, we show that the proteins Pkc1 and Pfy1 play a role in the repolarization of the actin cytoskeleton and in cell survival in response to oxidative stress. We have also developed an assay to determine the actin polymerization capacity of total protein extracts using fluorescence recovery after photobleaching techniques and actin purified from rabbit muscle. This assay allowed us to demonstrate that Pfy1 promotes actin polymerization under conditions of oxidative stress, while Pkc1 induces actin polymerization and cell survival under all the conditions tested.

View Article and Find Full Text PDF

A hydrophobicity density is defined for a protein through its hydrophobicity tensor (similar to the inertia tensor), by using the Eisenberg hydrophobicity scale of the hydrophobic amino acids of a protein. This allows calculation of the radii of the corresponding hydrophobic ellipsoid of a protein and thus subsequently of its hydrophobic density. A hydrophobicity density profile is then obtained by simulating point mutations of each amino acid of a protein either to a high hydrophobicity value or to zero hydrophobicity.

View Article and Find Full Text PDF

The dependence of some molecular motions in the enzyme 1,3-1,4-beta-glucanase from Bacillus licheniformis on temperature changes and the role of the calcium ion in them were explored. For this purpose, two molecular dynamics simulated trajectories along 4 ns at low (300 K) and high (325 K) temperatures were generated by the GROMOS96 package. Several structural and thermodynamic parameters were calculated, including entropy values, solvation energies, and essential dynamics (ED).

View Article and Find Full Text PDF

The enhancement of protein thermostability is an important issue for both basic science and biotechnology purposes. We have developed a thermostability criterion for a protein in terms of a quasi-electric dipole moment (contributed by its charged residues) defined for an electric charge distribution whose total charge is not zero. It was found that minimization of the modulus of this dipole moment increased its thermal stability, as demonstrated by surveying these values in pairs of mesostable-thermostable homologous proteins and in mutations described in the literature.

View Article and Find Full Text PDF