Collybistin (CB) is a rho guanine exchange factor found at GABAergic and glycinergic postsynapses that interacts with the inhibitory scaffold protein, gephyrin, and induces accumulation of gephyrin and GABA type-A receptors (GABARs) to the postsynapse. We have previously reported that the isoform without the src homology 3 (SH3) domain, CBSH3-, is particularly active in enhancing the GABAergic postsynapse in both cultured hippocampal neurons as well as in cortical pyramidal neurons after chronic expression in electroporated (IUE) rats. Deficiency of CB in knock-out (KO) mice results in absence of gephyrin and gephyrin-dependent GABARs at postsynaptic sites in several brain regions, including hippocampus.
View Article and Find Full Text PDFIt has been shown that subunit composition is the main determinant of the synaptic or extrasynaptic localization of GABA receptors (GABARs). Synaptic and extrasynaptic GABARs are involved in phasic and tonic inhibition, respectively. It has been proposed that synaptic GABARs bind to the postsynaptic gephyrin/collybistin (Geph/CB) lattice, but not the typically extrasynaptic GABARs.
View Article and Find Full Text PDFCollybistin (CB) is a guanine nucleotide exchange factor (GEF) selectively localized at GABAergic and glycinergic postsynapses. Analysis of mRNA shows that several isoforms of collybistin are expressed in the brain. Some of the isoforms have a SH3 domain (CBSH3+) and some have no SH3 domain (CBSH3-).
View Article and Find Full Text PDFIt has been proposed that the combinatorial expression of γ-protocadherins (Pcdh-γs) and other clustered protocadherins (Pcdhs) provides a code of molecular identity and individuality to neurons, which plays a major role in the establishment of specific synaptic connectivity and formation of neuronal circuits. Particular attention has been directed to the Pcdh-γ family, for which experimental evidence derived from Pcdh-γ-deficient mice shows that they are involved in dendrite self-avoidance, synapse development, dendritic arborization, spine maturation, and prevention of apoptosis of some neurons. Moreover, a triple-mutant mouse deficient in the three C-type members of the Pcdh-γ family (Pcdh-γC3, Pcdh-γC4, and Pcdh-γC5) shows a phenotype similar to the mouse deficient in whole Pcdh-γ family, indicating that the latter is largely due to the absence of C-type Pcdh-γs.
View Article and Find Full Text PDFLocal neocortical circuits play critical roles in information processing, including synaptic plasticity, circuit physiology, and learning, and GABAergic inhibitory interneurons have key roles in these circuits. Moreover, specific neurological disorders, including schizophrenia and autism, are associated with deficits in GABAergic transmission in these circuits. GABAergic synapses represent a small fraction of neocortical synapses, and are embedded in complex local circuits that contain many neuron and synapse types.
View Article and Find Full Text PDFThe recruitment of inhibitory GABA receptors to neuronal synapses requires a complex interplay between receptors, neuroligins, the scaffolding protein gephyrin and the GDP-GTP exchange factor collybistin (CB). Collybistin is regulated by protein-protein interactions at the N-terminal SH3 domain, which can bind neuroligins 2/4 and the GABAR α2 subunit. Collybistin also harbors a RhoGEF domain which mediates interactions with gephyrin and catalyzes GDP-GTP exchange on Cdc42.
View Article and Find Full Text PDFCollybistin (CB) is a guanine nucleotide exchange factor selectively localized to γ-aminobutyric acid (GABA)ergic and glycinergic postsynapses. Active CB interacts with gephyrin, inducing the submembranous clustering and the postsynaptic accumulation of gephyrin, which is a scaffold protein that recruits GABA receptors (GABA Rs) at the postsynapse. CB is expressed with or without a src homology 3 (SH3) domain.
View Article and Find Full Text PDFJ Comp Neurol
June 2015
We studied the effect of clonal overexpression of neuroligin 3 (NL3) or neuroligin 2 (NL2) in the adult rat cerebral cortex following in utero electroporation (IUEP) at embryonic stage E14. Overexpression of NL3 leads to a large increase in vesicular gamma-aminobutyric acid (GABA) transporter (vGAT) and glutamic acid decarboxylase (GAD)65 in the GABAergic contacts that the overexpressing neurons receive. Overexpression of NL2 produced a similar effect but to a lesser extent.
View Article and Find Full Text PDFWe have found that the large intracellular loop of the γ2 GABAA receptor (R) subunit (γ2IL) interacts with RNF34 (an E3 ubiquitin ligase), as shown by yeast two-hybrid and in vitro pulldown assays. In brain extracts, RNF34 co-immunoprecipitates with assembled GABAARs. In co-transfected HEK293 cells, RNF34 reduces the expression of the γ2 GABAAR subunit by increasing the ratio of ubiquitinated/nonubiquitinated γ2.
View Article and Find Full Text PDFActivity-dependent dendritic development represents a crucial step in brain development, but its underlying mechanisms remain to be fully elucidated. Here we report that glycogen synthase kinase 3β (GSK3β) regulates dendritic development in an activity-dependent manner. We find that GSK3β in somatodendritic compartments of hippocampal neurons becomes highly phosphorylated at serine-9 upon synaptogenesis.
View Article and Find Full Text PDFWe have found that the γ2 subunit of the GABA(A) receptor (γ2-GABA(A)R) specifically interacts with protocadherin-γC5 (Pcdh-γC5) in the rat brain. The interaction occurs between the large intracellular loop of the γ2-GABA(A)R and the cytoplasmic domain of Pcdh-γC5. In brain extracts, Pcdh-γC5 coimmunoprecipitates with GABA(A)Rs.
View Article and Find Full Text PDFGABA(A) receptors (GABA(A)-Rs) are localized at both synaptic and extrasynaptic sites, mediating phasic and tonic inhibition, respectively. Previous studies suggest an important role of γ2 and δ subunits in synaptic versus extrasynaptic targeting of GABA(A)-Rs. Here, we demonstrate differential function of α2 and α6 subunits in guiding the localization of GABA(A)-Rs.
View Article and Find Full Text PDFCollybistin promotes submembrane clustering of gephyrin and is essential for the postsynaptic localization of gephyrin and γ-aminobutyric acid type A (GABA(A)) receptors at GABAergic synapses in hippocampus and amygdala. Four collybistin isoforms are expressed in brain neurons; CB2 and CB3 differ in the C terminus and occur with and without the Src homology 3 (SH3) domain. We have found that in transfected hippocampal neurons, all collybistin isoforms (CB2(SH3+), CB2(SH3-), CB3(SH3+), and CB3(SH3-)) target to and concentrate at GABAergic postsynapses.
View Article and Find Full Text PDFIt has been proposed that gamma-protocadherins (Pcdh-gammas) are involved in the establishment of specific patterns of neuronal connectivity. Contrary to the other Pcdh-gammas, which are expressed in the embryo, Pcdh-gammaC5 is expressed postnatally in the brain, coinciding with the peak of synaptogenesis. We have developed an antibody specific for Pcdh-gammaC5 to study the expression and localization of Pcdh-gammaC5 in brain.
View Article and Find Full Text PDFMass spectrometry and immunoblot analysis of a rat brain fraction enriched in type-II postsynaptic densities and postsynaptic GABAergic markers showed enrichment in the protein septin 11. Septin 11 is expressed throughout the brain, being particularly high in the spiny branchlets of the Purkinje cells in the molecular layer of cerebellum and in the olfactory bulb. Immunofluorescence of cultured hippocampal neurons showed that 54 +/- 4% of the GABAergic synapses and 25 +/- 2% of the glutamatergic synapses had colocalizing septin 11 clusters.
View Article and Find Full Text PDFWe have previously shown that the glutamate receptor interacting protein 1 (GRIP1) splice forms GRIP1a/b and GRIP1c4-7 are present at the GABAergic post-synaptic complex. Nevertheless, the role that these GRIP1 protein isoforms play at the GABAergic post-synaptic complex is not known. We are now showing that GRIP1c4-7 and GRIP1a/b interact with gephyrin, the main post-synaptic scaffold protein of GABAergic and glycinergic synapses.
View Article and Find Full Text PDFWe have recently shown that disrupting the expression and post-synaptic clustering of gephyrin in cultured hippocampal pyramidal cells, by either gephyrin RNAi (RNA interference) or over-expression of a dominant negative gephyrin-enhanced green fluorescent protein (EGFP) fusion protein, leads to decreased number of post-synaptic gephyrin and GABA(A) receptor clusters and to reduced GABAergic innervation of these cells. On the other hand, increasing gephyrin expression led to a small increase in the number of gephyrin and GABA(A) receptor clusters and to little or no effect on GABAergic innervation. We are now reporting that altering gephyrin expression and clustering affects the size but not the density of glutamatergic synaptic contacts.
View Article and Find Full Text PDFMol Cell Neurosci
December 2007
Although gephyrin is an important postsynaptic scaffolding protein at GABAergic synapses, the role of gephyrin for GABAergic synapse formation and/or maintenance is still under debate. We report here that knocking down gephyrin expression with small hairpin RNAs (shRNAs) in cultured hippocampal pyramidal cells decreased both the number of gephyrin and GABA(A) receptor clusters. Similar results were obtained by disrupting the clustering of endogenous gephyrin by overexpressing a gephyrin-EGFP fusion protein that formed aggregates with the endogenous gephyrin.
View Article and Find Full Text PDFIn this article we present a comprehensive review of relevant research and reports on the GABA(A) receptor in the aged and Alzheimer's disease (AD) brain. In comparison to glutamatergic and cholinergic systems, the GABAergic system is relatively spared in AD, but the precise mechanisms underlying differential vulnerability are not well understood. Using several methods, investigations demonstrate that despite resistance of the GABAergic system to neurodegeneration, particular subunits of the GABA(A) receptor are altered with age and AD, which can induce compensatory increases in GABA(A) receptor subunits within surrounding cells.
View Article and Find Full Text PDFRat forebrain synaptosomes were extracted with Triton X-100 at 4 degrees C and the insoluble material, which is enriched in post-synaptic densities (PSDs), was subjected to sedimentation on a continuous sucrose gradient. Two pools of Triton X-100-insoluble gamma-aminobutyric acid type-A receptors (GABA(A)Rs) were identified: (i) a higher-density pool (rho = 1.10-1.
View Article and Find Full Text PDFThe alpha5 subunit of the GABA(A) receptors (GABA(A)Rs) has a restricted expression in the brain. Maximum expression of this subunit occurs in the hippocampus, cerebral cortex, and olfactory bulb. Hippocampal pyramidal cells show high expression of alpha5 subunit-containing GABA(A)Rs (alpha5-GABA(A)Rs) both in culture and in the intact brain.
View Article and Find Full Text PDFWe cloned two novel alternatively-spliced mRNA isoforms of glutamate receptor interacting protein 1 (GRIP1) which we named GRIP1d and GRIP1e 4-7. GRIP1d is a 135 kDa, 7-PDZ-domain variant of GRIP1, containing the 12 amino acid C-terminus originally described for the 4-PDZ-domain GRIP1c 4-7. GRIP1e 4-7 is a 75 kDa 4-PDZ-domain variant of GRIP1, containing the 12 amino acid C-terminus originally described for the 7-PDZ-domain GRIP1a/b.
View Article and Find Full Text PDFWe have used RNA interference (RNAi) to knock down the expression of the gamma2 subunit of the GABA(A) receptors (GABA(A)Rs) in pyramidal neurons in culture and in the intact brain. Two hairpin small interference RNAs (shRNAs) for the gamma2 subunit, one targeting the coding region and the other one the 3'-untranslated region (UTR) of the gamma2 mRNA, when introduced into cultured rat hippocampal pyramidal neurons, efficiently inhibited the synthesis of the GABA(A) receptor gamma2 subunit and the clustering of other GABA(A)R subunits and gephyrin in these cells. More significantly, this effect was accompanied by a reduction of the GABAergic innervation that these neurons received.
View Article and Find Full Text PDFThe glutamate receptor-interacting protein GRIP1 is present in glutamatergic synapses and interacts with the GluR2/3/4c subunits of the AMPA receptors. This interaction plays important roles in trafficking, synaptic targeting, and recycling of AMPA receptors as well as in the plasticity of glutamatergic synapses. Although GRIP1 has been shown to be present at GABAergic synapses in cultured neurons, the use of EM (electron microscopy) immunocytochemistry in the intact brain has failed to convincingly reveal the presence of GRIP1 in GABAergic synapses.
View Article and Find Full Text PDF