Sorafenib is the unique accepted molecular targeted drug for the treatment of patients in advanced stage of hepatocellular carcinoma. The current study evaluated cell signaling regulation of endoplasmic reticulum (ER) stress, c-Jun-N-terminal kinase (JNK), Akt, and 5'AMP-activated protein kinase (AMPK) leading to autophagy and apoptosis induced by sorafenib. Sorafenib induced early (3-12 hr) ER stress characterized by an increase of P-eIF2α/eIF2α, C/EBP homologous protein (CHOP), IRE1α, and sXBP1, but a decrease of activating transcription factor 6 expression, overall temporally associated with the increase of P-JNK1/2/JNK1/2, P-AMPKα, P-Foxo3a, P-AKt/AKt and P-Foxo3a/Foxo3a ratios, and reduction of P-mammalian target of rapamycin (mTOR)/mTOR and protein translation.
View Article and Find Full Text PDFBackground & Aims: Patients with hepatocellular carcinoma (HCC) submitted to orthotopic liver transplantation (OLT) have a variable 5-year survival rate limited mostly by tumor recurrence. The etiology, age, sex, alcohol, Child-Pugh, and the immunesuppressor have been associated with tumour recurrence. The expression of ΔNp73 is related to the reduced survival of patients with HCC.
View Article and Find Full Text PDFHepatocellular carcinoma develops in cirrhotic liver. The nitric oxide (NO) synthase type III (NOS-3) overexpression induces cell death in hepatoma cells. The study developed gene therapy designed to specifically overexpress NOS-3 in cultured hepatoma cells, and in tumors derived from orthotopically implanted tumor cells in fibrotic livers.
View Article and Find Full Text PDFThe CD95/CD95 ligand (CD95L) system regulates cell death, which plays a relevant role in cancer. The impairment of the CD95/CD95L system in cancer cells may lead to apoptosis resistance and contributes to tumor progression. However, a complete loss of CD95 is rarely seen in human cancers, and many cancer cells express large quantities of CD95.
View Article and Find Full Text PDFAims: Ion channel remodelling and ventricular conduction system (VCS) alterations play relevant roles in the generation of cardiac arrhythmias, but the interaction between ion channel remodelling and cardiac conduction system dysfunctions in an arrhythmogenic context remain unexplored.
Methods And Results: We have used a transgenic mouse line previously characterized as an animal model of Long QT Syndrome (LQTS) to analyse ion channel remodelling and VCS configuration. Reverse transcriptase-PCR and immunohistochemistry analysis showed early cardiac sodium channel upregulation at embryonic stages prior to the onset of Kv potassium channel remodelling, and cardiac hypertrophy at foetal stages.
Curr Cancer Drug Targets
March 2013
The recent discoveries of genomic and molecular markers in hepatocellular carcinoma (HCC) have improved the understanding about the complexity of the signal transduction pathways as well as their relevance in normal and liver cancer cells. The identification of the functional repercussions of punctual mutations and crosstalk among cell signaling will promote the identification of specific combinatorial targeted molecular therapies to specific subsets of patients which will allow the development of personalized-based therapy and increase the survival of patients. Numerous molecular targets are in the cross-road between oncogenic and anti-apoptotic programs, genetic or epigenetic alterations, which overall may have a similar cellular phenotype.
View Article and Find Full Text PDFNitric oxide (NO) is a lipophillic, highly diffusible, and short-lived physiological messenger which regulates a variety of physiopathological responses. NO may exert its cellular action through cGMP-dependent and cGMP-independent pathways which includes different postranslational modifications. The effect of NO in cancer depends on the activity and localization of NOS isoforms, concentration and duration of NO exposure, cellular sensitivity, and hypoxia/re-oxygenation process.
View Article and Find Full Text PDFThe cardiac conduction system (CCS) is composed of a group of myocardial tissues that control and coordinate the heart. Alterations in the CCS - especially in the His-Purkinje system, have been identified as a major cause of lethal arrhythmias. Unstable arrhythmias secondary to channelopathies significantly increase the risk of sudden cardiac death (SCD).
View Article and Find Full Text PDF