Wastewater treatment plants (WWTPs) are the final stage of the anthropogenic water cycle where a wide range of chemical and biological markers of human activity can be found. In COVID-19 disease contexts, wastewater surveillance has been used to infer community trends based on viral abundance and SARS-CoV-2 RNA variant composition, which has served to anticipate and establish appropriate protocols to prevent potential viral outbreaks. Numerous studies worldwide have provided reliable and robust tools to detect and quantify SARS-CoV-2 RNA in wastewater, although due to the high dilution and degradation rate of the viral RNA in such samples, the detection limit of the pathogen has been a bottleneck for the proposed protocols so far.
View Article and Find Full Text PDFViroids are small, single-stranded, non-protein coding and circular RNAs able to infect host plants in the absence of any helper virus. They may elicit symptoms in their hosts, but the underlying molecular pathways are only partially known. Here we address the role of post-transcriptional RNA silencing in plant-viroid-interplay, with major emphasis on the involvement of this sequence-specific RNA degradation mechanism in both plant antiviroid defence and viroid pathogenesis.
View Article and Find Full Text PDFEight strains were evaluated for their potential to protect wheat seedlings against severe (no irrigation within two weeks) water stress (WS). Considering the plant fresh weight and phenotype, T140, which displays 1-aminocyclopropane-1-carboxylic acid deaminase activity and which is able to produce several phytohormones, was selected. The molecular and biochemical results obtained from 4-week-old wheat seedlings linked T140 application with a downregulation in the WS-response genes, a decrease in antioxidant activities, and a drop in the proline content, as well as low levels of hydrogen peroxide and malondialdehyde in response to severe WS.
View Article and Find Full Text PDFThere is no doubt that is an inhabitant of the rhizosphere that plays an important role in how plants interact with the environment. Beyond the production of cell wall degrading enzymes and metabolites, spp. can protect plants by inducing faster and stronger immune responses, a mechanism known as priming, which involves enhanced accumulation of dormant cellular proteins that function in intracellular signal amplification.
View Article and Find Full Text PDFThis study examined the microbicidal activity of ultraviolet (UV)-C irradiance (robot 1) and ozone generated at UV-C by low-pressure mercury vapor lamps (robot 2) adapted to mobile robotic devices for surface decontamination, which was achieved in less than 1 h. Depending on their wall structure and outer envelopes, many microorganisms display different levels of resistance to decontaminating agents. Thus, the need for novel disinfection approaches is further exacerbated by the increased prevalence of multidrug-resistant bacteria, as well as the potential of novel microorganisms, with the ability to cause disease outbreaks.
View Article and Find Full Text PDFCytoplasmic degradation of endogenous RNAs is an integral part of RNA quality control (RQC) and often relies on the removal of the 5' cap structure and their subsequent 5' to 3' degradation in cytoplasmic processing (P-)bodies. In parallel, many eukaryotes degrade exogenous and selected endogenous RNAs through post-transcriptional gene silencing (PTGS). In plants, PTGS depends on small interfering (si)RNAs produced after the conversion of single-stranded RNAs to double-stranded RNAs by the cellular RNA-dependent RNA polymerase 6 (RDR6) in cytoplasmic siRNA-bodies.
View Article and Find Full Text PDFEukaryotic organisms have evolved a variety of gene silencing pathways in which small RNAs, 20- to 30-nucleotides in length, repress the expression of sequence homologous genes at the transcriptional or post-transcriptional levels. In plants, RNA silencing pathways play important roles in regulating development and response to both biotic and abiotic stresses. The molecular basis of these complex and interconnected pathways has emerged only in recent years with the identification of many of the genes necessary for the biogenesis and action of small RNAs.
View Article and Find Full Text PDFEukaryotic RNA quality control (RQC) uses both endonucleolytic and exonucleolytic degradation to eliminate dysfunctional RNAs. In addition, endogenous and exogenous RNAs are degraded through post-transcriptional gene silencing (PTGS), which is triggered by the production of double-stranded (ds)RNAs and proceeds through short-interfering (si)RNA-directed ARGONAUTE-mediated endonucleolytic cleavage. Compromising cytoplasmic or nuclear 5'-3' exoribonuclease function enhances sense-transgene (S)-PTGS in Arabidopsis, suggesting that these pathways compete for similar RNA substrates.
View Article and Find Full Text PDFGiven their sessile condition, land plants need to integrate environmental cues rapidly and send signal throughout the organism to modify their metabolism accordingly. Small RNA (sRNA) molecules are among the messengers that plant cells use to carry such signals. These molecules originate from fold-back stem-loops transcribed from endogenous loci or from perfect double-stranded RNA produced through the action of RNA-dependent RNA polymerases.
View Article and Find Full Text PDFIn plants, most microRNAs (miRNAs) and several endogenous small interfering RNAs (siRNAs) bind to ARGONAUTE1 (AGO1) to regulate the expression of endogenous genes through post-transcriptional gene silencing (PTGS). AGO1 also participates in a siRNA-mediated PTGS defense response that thwarts exogenous RNA deriving from viruses and transgenes. Here, we reveal that plants supporting transgene PTGS exhibit increased levels of AGO1 protein.
View Article and Find Full Text PDFViroids are small, circular RNA pathogens, which infect several crop plants and can cause diseases of economic importance. They do not code for proteins but they contain a number of RNA structural elements, which interact with factors of the host. The resulting set of sophisticated and specific interactions enables them to use the host machinery for their replication and transport, circumvent its defence reactions and alter its gene expression.
View Article and Find Full Text PDFThe transcription initiation sites of viroid RNAs, despite their relevance for replication and in vivo folding, are poorly characterized. Here we have examined this question for Peach latent mosaic viroid (PLMVd), which belongs to the family of chloroplastic viroids with hammerhead ribozymes (Avsunviroidae), by adapting an RNA ligase-mediated rapid amplification of cDNA ends methodology developed for mapping the genuine capped 5' termini of eukaryotic messenger RNAs. To this aim, the characteristic free 5'-triphosphate group of chloroplastic primary transcripts from PLMVd-infected young fruits was previously capped in vitro with GTP and guanylyltransferase.
View Article and Find Full Text PDFFor the identification of RNA-binding proteins that specifically interact with potato spindle tuber viroid (PSTVd), we subjected a tomato cDNA expression library prepared from viroid-infected leaves to an RNA ligand screening procedure. We repeatedly identified cDNA clones that expressed a protein of 602 amino acids. The protein contains a bromodomain and was termed viroid RNA-binding protein 1 (VIRP1).
View Article and Find Full Text PDFViroids are noncoding circular single-stranded RNAs that are propagated systemically in plants. VirP1 is a protein from tomato, which is an excellent host for potato spindle tuber viroid (PSTVd), and it has been isolated by virtue of its specific in vitro binding to PSTVd RNA. We report on the specific in vivo interaction of VirP1 with full-length viroid RNA as well as with subfragments in the three-hybrid system.
View Article and Find Full Text PDF