Publications by authors named "Angel Delvalls"

The increasing CO-concentrations in the atmosphere promote ocean acidification. Seawater chemistry changes interact with contaminants, such as illicit drugs in the coastal zones. This work evaluates impacts of pH decrease and crack-cocaine exposure on the commercial mussel Perna perna through biomarker responses (lysosomal membrane stability, lipid peroxidation, and DNA strand breaks).

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluates sediment quality in the Guadalquivir River between Alcalá del Río and Seville, focusing on contamination and toxicity using the Asiatic clam as a bioindicator.
  • This research employs a range of biomarkers to identify the adverse effects of sediment contamination from various human activities, revealing significant biological stress from metal(loid)s, especially near Seville.
  • Findings suggest that the biomarker approach effectively highlights contamination impacts, with evidence that as exposure levels peak, the clams' detoxification abilities decline, indicating a deterioration in sediment quality.
View Article and Find Full Text PDF

As a result of the increasing pressure provoked by anthropogenic activities, the world climate is changing and oceans health is in danger. One of the most important factors affecting the marine environment is the well-known process called ocean acidification. Also, there are other natural or anthropogenic processes that produce an enrichment of CO in the marine environment (CO leakages from Carbon Capture and Storage technologies (CCS), organic matter diagenesis, volcanic vents, etc).

View Article and Find Full Text PDF

Carbon-capture and storage is considered to be a potential mitigation option for climate change. However, accidental leaks of CO can occur, resulting in changes in ocean chemistry such as acidification and metal mobilization. Laboratory experiments were performed to provide data on the effects of CO-related acidification on the chemical fractionation of metal(loid)s in marine-contaminated sediments using sequential extraction procedures.

View Article and Find Full Text PDF

The Ribeira de Iguape River (Southeast Brazil) is metal contaminated by mining activities. Despite it has been cataloged as "in via of restoration" by the literature, this basin is still a sink of pollution in some segments of the fluvial system. This study aimed to assess the sediment quality in the lower part of the RIR basin.

View Article and Find Full Text PDF

Lanthanide series have been used as a record of the water-rock interaction and work as a tool for identifying impacts of acid mine drainage (lixiviate residue derived from sulphide oxidation). The application of North-American Shale Composite-normalized rare earth elements patterns to these minority elements allows determining the origin of the contamination. In the current study, geochemical patterns were applied to rare earth elements bioaccumulated in the soft tissue of the freshwater clam Corbicula fluminea after exposure to different acid mine drainage contaminated environments.

View Article and Find Full Text PDF

The sediment quality of Ribeira de Iguape River is affected by former Pb extraction mining. Some studies affirm the restoration status of the basin, however, mobility of metals and its associated risk is still questioned. This study integrates the metal concentrations in the lower part of the basin with different contamination source to determine the existence of risks associated with the mobile fractions of the geochemical matrix.

View Article and Find Full Text PDF

Carbon capture and storage (CCS) is a viable option to reduce high concentrations of CO and mitigate their negative effects. This option has associated risks such as possible CO leakage from the storage sites. So far, negative effects deriving from a CO release have been reported for benthic macrofauna in both polluted and nonpolluted sediments.

View Article and Find Full Text PDF

CO storage in sub-seabed marine geological formations has been proposed as an adequate strategy to mitigate high CO concentration from the atmosphere. The lack of knowledge about the potential risks of this technology on marine bacteria population in presence of metals has lead us to perform laboratory-scale experiments in order to evaluate its consequences. Thus, the effects of Zn and Cd were studied under acid conditions on Roseobacter sp.

View Article and Find Full Text PDF

Streams and rivers strongly affected by acid mine drainage (AMD) have legal vacuum in terms of assessing the water toxicity, since the use of conventional environmental quality biomarkers is not possible due to the absence of macroinvertebrate organisms. The Asian clam Corbicula fluminea has been widely used as a biomonitor of metal contamination by AMD in freshwater systems. However, these clams are considered an invasive species in Spain and the transplantation in the field study is not allowed by the Environmental Protection Agency.

View Article and Find Full Text PDF
Article Synopsis
  • The rivers in the Iberian Pyrite Belt are severely impacted by acid mine drainage, leading to high acidity and elevated metal concentrations that degrade the Odiel River basin.
  • A weight of evidence approach was used to assess pollution, integrating various data types, which showed increasing pollution levels downstream from mining impacts.
  • Site-specific sediment quality thresholds were determined for several metals, suggesting significant toxicity risks in the area, and highlighting the need for lower sediment quality standards.
View Article and Find Full Text PDF

This study evaluated the alteration of the enzymatic system of the freshwater Asian clam exposed to different copper concentrations. Individuals of Corbicula fluminea were exposed to different concentrations of dissolved Cu (0.5, 1, and 2 mg L(-1)) for 7 days, then, biomarkers of oxidative stress (GST, GPx, GR), exposure (MTs), effect (AChE), and damage (LPO, DNA strand breaks) were quantified.

View Article and Find Full Text PDF

The potential impact of dredged sediment has been assessed at sixteen areas of the high-traffic port of Vilagarcia (Northwest Spanish Atlantic coast). The assessment has been done by three weight-of-evidence tools, which integrated data on sediment characteristics and toxicity responses of Ampelisca brevicornis, Vibrio fischeri and eggs and embryos of Paracentrotus lividus. Two of the tools also represented management options regarding the disposal of dredged material.

View Article and Find Full Text PDF

A battery of biomarkers was evaluated on Ruditapes philippinarum exposed during 14 days to caffeine, ibuprofen, carbamazepine and novobiocin (0.1, 1, 5, 10, 15, and 50µgL(-1)). The battery included general stress (lysosomal membrane stability - LMS) analysed in the hemolymph, and biochemical biomarkers analysed in digestive gland tissues including: biomarkers of phase I (etoxyresorufin O-deethylase - EROD, dibenzylfluorescein dealkylase - DBF), phase II (gluthathione-S-transferase - GST), oxidative stress (gluthathione reductase - GR, gluthathione peroxidase - GPX, lipid peroxidation - LPO), neurotoxicity (acetylcholinesterase activity - AChE), and genotoxicity (DNA damage).

View Article and Find Full Text PDF

Reports indicating the presence of pharmaceutical in fresh water environment in the ngL(-1) to µgL(-1) range are occurring with increasing frequency. It is also a fact that pharmaceuticals may produce adverse effects on aquatic organisms. Nevertheless, there is still a lack of knowledge regarding how these emergent contaminants may affect aquatic biota.

View Article and Find Full Text PDF

One of the main risks associated with carbon capture and storage (CCS) activities is the leakage of the stored CO2, which can result in several effects on the ecosystem. Laboratory-scale experiments were performed to provide data on the possible effects of CO2 leakage from CCS on the mobility of metals previously trapped in sediments. Metal-contaminated sediments were collected and submitted to acidification by means of CO2 injection using different pH treatments.

View Article and Find Full Text PDF

Carbon capture and storage is increasingly being considered one of the most efficient approaches to mitigate the increase of CO2 in the atmosphere associated with anthropogenic emissions. However, the environmental effects of potential CO2 leaks remain largely unknown. The amphipod Ampelisca brevicornis was exposed to environmental sediments collected in different areas of the Gulf of Cádiz and subjected to several pH treatments to study the effects of CO2-induced acidification on sediment toxicity.

View Article and Find Full Text PDF

To assess the potential effects on metal mobilization due to leakages of CO2 during its injection and storage in marine systems, an experimental set-up was devised and operated, using the polychaete Hediste diversicolor as the model organism. The objective was to study the effects of such leakage in the expected scenarios of pH values between 8.0 and 6.

View Article and Find Full Text PDF

Although pharmaceuticals have been detected in the environment only in the range from ng/L to microg/L, it has been demonstrated that they can adversely affect the health status of aquatic organisms. Lysosomal membrane stability (LMS) has previously been applied as an indicator of cellular well-being to determine health status in bivalve mussels. The objective of this study is to evaluate LMS in Ruditapes philippinarum haemolymph using the neutral red retention assay (NRRA).

View Article and Find Full Text PDF

Carbon dioxide capture and storage (CCS) in submarine geological formations has been proposed as a mitigation measure for the prevention of global warming. However, leakage of CO2 to overlying sediments may occur over time, leading to various effects on ecosystems. Laboratory-scale experiments were performed, involving direct release of carbon dioxide into sediment, inside non-pressurized chambers, in order to provide data on the possible effects of CO2 leakage from geological storage sites on the fate of several metals.

View Article and Find Full Text PDF

The effects of solid organic wastes from a marine fish farm on sediments were tested using benthic community as ecological indicators and biomarkers in native clam (Scrobicularia plana) as biochemical indicators. The benthic fauna and clam samples were collected in the intertidal sediment in October 2010 from five sites of the Rio San Pedro (RSP) creek, following a gradient of contamination from the aquaculture effluent to the control site. Numbers of species, abundance, richness and Shannon diversity were the biodiversity indicators measured in benthic fauna.

View Article and Find Full Text PDF

Assessing toxicity of contaminated estuarine sediments poses a challenge to ecotoxicologists due to the complex geochemical nature of sediments and to the combination of multiple classes of toxicants. Juvenile Senegalese soles were exposed for 14 days in the laboratory and in situ (field) to sediments from three sites (a reference plus two contaminated) of a Portuguese estuary. Sediment characterization confirmed the combination of metals, polycyclic aromatic hydrocarbons and organochlorines in the two contaminated sediments.

View Article and Find Full Text PDF

Surveying toxicity of complex geochemical media as aquatic sediments often yields results that are either difficult to interpret or even contradictory to acknowledged theory. Multi-level biomarkers were investigated in a benthic fish exposed to estuarine sediments through laboratory and in situ bioassays, to evaluate their employment either in ecological risk assessment or in more mechanistic approaches to assess sediment-bound toxicity. Biomarkers reflecting lesions (such as genotoxicity or histopathology), regardless of their low or absent specificity to contaminants, are efficient in segregating exposure to contaminated from uncontaminated sediments even when classical biomarkers like CYP1A and metallothionein induction are inconclusive.

View Article and Find Full Text PDF

Metal contamination from acid mine drainage (AMD) is a serious problem in the southwest of the Iberian Peninsula, where the Iberian Pyrite Belt is located. This zone contains original sulfide reserves of about 1700Mt distributed among more than 50 massive sulfide deposits. Weathering of these minerals releases to the waters significant quantities of toxic elements, which severely affect the sediments and surface waters of the region.

View Article and Find Full Text PDF

Dredged material management is a key issue for the protection of aquatic environments. The in situ approach using caged bioindicator species has been chosen lately as a new methodology for the assessment of dredged material. In a tier testing approach, neutral red retention (NRR) assay has been applied as a screening tool to detect adverse changes in health status associated with contamination.

View Article and Find Full Text PDF