The identification of new protective antigens for the development of tick vaccines may be approached by selecting antigen candidates that have key biological functions. Bioactive proteins playing key functions for tick feeding and pathogen transmission are secreted into the host via tick saliva. Adult argasid ticks must resynthesise and replace these proteins after each feeding to be able to repeat new trophogonic cycles.
View Article and Find Full Text PDFBackground: The argasid tick Ornithodoros erraticus is the main vector of tick-borne human relapsing fever (TBRF) and African swine fever (ASF) in the Mediterranean Basin. The prevention and control of these diseases would greatly benefit from the elimination of O. erraticus populations, and anti-tick vaccines are envisaged as an effective and sustainable alternative to chemical acaricide usage for tick control.
View Article and Find Full Text PDFBackground: The argasid tick Ornithodoros moubata is the main vector in mainland Africa of African swine fever virus and the spirochete Borrelia duttoni, which causes human relapsing fever. The elimination of populations of O. moubata would contribute to the prevention and control of these two serious diseases.
View Article and Find Full Text PDF