Packet information encoding of neural signals was proposed for vision about 50 years ago and has recently been revived as a plausible strategy generalizable to natural and artificial sensory systems. It involves discrete image segmentation controlled by feedback and the ability to store and compare packets of information. This article shows that neurons of the cerebellum-like electrosensory lobe (EL) of the electric fish Gymnotus omarorum use spike-count and spike-timing distribution as constitutive variables of packets of information that encode one-by-one the electrosensory images generated by a self-timed series of electric organ discharges (EODs).
View Article and Find Full Text PDFThe electric organ discharges (EODs) produced by weakly electric fish have long been a source of scientific intrigue and inspiration. The study of these species has contributed to our understanding of the organization of fixed action patterns, as well as enriching general imaging theory by unveiling the dual impact of an agent's actions on the environment and its own sensory system during the imaging process. This Centenary Review firstly compares how weakly electric fish generate species- and sex-specific stereotyped electric fields by considering: (1) peripheral mechanisms, including the geometry, channel repertoire and innervation of the electrogenic units; (2) the organization of the electric organs (EOs); and (3) neural coordination mechanisms.
View Article and Find Full Text PDFGymnotiformes are nocturnal fishes inhabiting the root mats of floating plants. They use their electric organ discharge (EOD) to explore the environment and to communicate. Here, we show and describe tonic and phasic sensory-electromotor responses to light distinct from indirect effects depending on the light-induced endogenous circadian rhythm.
View Article and Find Full Text PDFThe pulse emitting weakly electric fish Gymnotus omarorum shows stereotyped "novelty responses" consisting of a transient acceleration of the rhythm of a self-emitted electric organ discharge that carries electrosensory signals. Here we show that rapid increases in electric image amplitude cause a "novelty detection potential" in the first electrosensory relay. This sign precedes and its amplitude predicts, the amplitude of the subsequent behavioral novelty response.
View Article and Find Full Text PDFThis article introduces and tests a simple model that describes a neural network found in nature, the electrosensory control of an electromotor pacemaker. The cornerstone of the model is an early-stage filter based on the subtraction of a feedforward integrated version of the recent sensory past from the present input signal. The output of this filter governs the modulation of a premotor pacemaker command driving the sensory signal carrier generation and, in consequence, the timing of subsequent electrosensory input.
View Article and Find Full Text PDFSome fish communicate using pulsatile, stereotyped electric organ discharges (EODs) that exhibit species- and sex-specific time courses. To ensure reproductive success, they must be able to discriminate conspecifics from sympatric species in the muddy waters they inhabit. We have previously shown that fish in both Gymnotus and Brachyhypopomus genera use the electric field lines as a tracking guide to approach conspecifics (electrotaxis).
View Article and Find Full Text PDFEarly sensory relay circuits in the vertebrate medulla often adopt a cerebellum-like organization specialized for comparing primary afferent inputs with central expectations. These circuits usually have a dual output, carried by center ON and center OFF neurons responding in opposite ways to the same stimulus at the center of their receptive fields. Here, we show in the electrosensory lateral line lobe of Gymnotiform weakly electric fish that basilar pyramidal neurons, representing 'ON' cells, and non-basilar pyramidal neurons, representing 'OFF' cells, have different intrinsic electrophysiological properties.
View Article and Find Full Text PDFUnderstanding how individuals detect and recognize signals emitted by conspecifics is fundamental to discussions of animal communication. The species pair and , found in syntopy in Uruguay, emit species-specific electric organ discharge (EOD) that can be sensed by both species. The aim of this study was to unveil whether either of these species is able to identify a conspecific EOD, and to investigate distinctive recognition signal features.
View Article and Find Full Text PDFStudies of pulse-type gymnotiform electric fishes have suggested that electric organ discharge waveforms (EODw) allow individuals to discriminate between conspecific and allospecific signals, but few have approached this experimentally. Here we implement a phase-locked playback technique for a syntopic species pair, Brachyhypopomus gauderio and Gymnotus omarorum. Both species respond to changes in stimulus waveform with a transitory reduction in the interpulse interval of their self-generated discharge, providing strong evidence of discrimination.
View Article and Find Full Text PDFWeakly electric fish polarize the nearby environment with a stereotyped electric field and gain information by detecting the changes imposed by objects with tuned sensors. Here we focus on polarization strategies as paradigmatic bioinspiring mechanisms for sensing devices. We begin this research developing a toy model that describes three polarization strategies exhibited by three different groups of fish.
View Article and Find Full Text PDFThe most broadly expressed and studied aspect of sensory transduction is receptor tuning to the power spectral density of the incoming signals. Temporal cues expressed in the phase spectrum are relevant in African and American pulse-emitting electric fish showing electroreceptors sensing the signals carried by the self- and conspecific-generated electric organ discharges. This article concerns the role of electroreceptor phase sensitivity in American pulse Gymnotiformes.
View Article and Find Full Text PDFIEEE Trans Biomed Circuits Syst
June 2018
There are neural recording applications in which the amplitude of common-mode interfering signals is several orders of magnitude higher than the amplitude of the signals of interest. This challenging situation for neural amplifiers occurs, among other applications, in neural recordings of weakly electric fish or nerve activity recordings made with cuff electrodes. This paper reports an integrated neural amplifier architecture targeting in-vivo recording of local field potentials and unitary signals from the brain stem of a weakly electric fish Gymnotus omarorum.
View Article and Find Full Text PDFAs in most sensory systems, electrosensory images in weakly electric fish are encoded in two parallel pathways, fast and slow. From work on wave-type electric fish, these fast and slow pathways are thought to encode the time and amplitude of electrosensory signals, respectively. The present study focuses on the primary afferents giving origin to the slow path of the pulse-type weakly electric fish We found that burst duration coders respond with a high-frequency train of spikes to each electric organ discharge.
View Article and Find Full Text PDFElectric fish are privileged animals for bio-inspiring man-built autonomous systems since they have a multimodal sense that allows underwater navigation, object classification and intraspecific communication. Although there are taxon dependent variations adapted to different environments, this multimodal system can be schematically described as having four main components: active electroreception, passive electroreception, lateral line sense and, proprioception. Amongst these sensory modalities, proprioception and electroreception show 'active' systems that extrct information carried by self generated forms of energy.
View Article and Find Full Text PDFDescriptions of the head-to-tail electric organ discharge (ht-EOD) waveform - typically recorded with electrodes at a distance of approximately 1-2 body lengths from the center of the subject - have traditionally been used to characterize species diversity in gymnotiform electric fish. However, even taxa with relatively simple ht-EODs show spatiotemporally complex fields near the body surface that are determined by site-specific electrogenic properties of the electric organ and electric filtering properties of adjacent tissues and skin. In Brachyhypopomus, a pulse-discharging genus in the family Hypopomidae, the regional characteristics of the electric organ and the role that the complex 'near field' plays in communication and/or electrolocation are not well known.
View Article and Find Full Text PDFThis is a first communication on the self-activation pattern of the electrosensory lobe in the pulse weakly electric fish Gymnotus omarorum. Field potentials in response to the fish's own electric organ discharge (EOD) were recorded along vertical tracks (50μm step) and on a transversal lattice array across the electrosensory lobe (resolution 50μm×100μm). The unitary activity of 82 neurons was recorded in the same experiments.
View Article and Find Full Text PDFModeling the electric field and images in electric fish contributes to a better understanding of the pre-receptor conditioning of electric images. Although the boundary element method has been very successful for calculating images and fields, complex electric organ discharges pose a challenge for active electroreception modeling. We have previously developed a direct method for calculating electric images which takes into account the structure and physiology of the electric organ as well as the geometry and resistivity of fish tissues.
View Article and Find Full Text PDFThis review deals with the question: what is the relationship between the properties of a neuron and the role that the neuron plays within a given neural circuit? Answering this kind of question requires collecting evidence from multiple neuron phenotypes and comparing the role of each type in circuits that perform well-defined computational tasks. The focus here is on the spherical neurons in the electrosensory lobe of the electric fish Gymnotus omarorum. They belong to the one-spike-onset phenotype expressed at the early stages of signal processing in various sensory modalities and diverse taxa.
View Article and Find Full Text PDFElectroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong.
View Article and Find Full Text PDFThis article reports a biophysical and behavioral assessment of the active electrolocation range of Gymnotus omarorum. Physical measurements show that the stimulus field of a point on the sensory mosaic (i.e.
View Article and Find Full Text PDFWe examined non-linear effects of the presence of one object on the electric image of another placed at the foveal region in Gymnotus omarorum. The sensory consequences of object mutual polarization on electric images were also depicted using behavioral procedures. Image measurements show that objects whose electric image is not detectable may modify the electric image of another placed closer to the fish and suggest that detection range and discrimination parameters used for one object may be affected when the presence of others enriches the scene.
View Article and Find Full Text PDFThis chapter provides a short review of the mechanisms used by electroreceptive fish to discriminate self- from nonself-generated signals. Electroreception is used by animals to detect objects of electric impedance different from the water, to detect natural electrogenic sources and to communicate signals between conspecifics. Electroreceptive animals may generate electric fields either with the purpose of electrically illuminating the neighborhood or as an epiphenomenon of other functions.
View Article and Find Full Text PDFActive electroreception in Gymnotus omarorum is a sensory modality that perceives the changes that nearby objects cause in a self generated electric field. The field is emitted as repetitive stereotyped pulses that stimulate skin electroreceptors. Differently from mormyriformes electric fish, gymnotiformes have an electric organ distributed along a large portion of the body, which fires sequentially.
View Article and Find Full Text PDFThis article deals with the role of fish's body and object's geometry on determining the image spatial shape in pulse Gymnotiforms. This problem was explored by measuring local electric fields along a line on the skin in the presence and absence of objects. We depicted object's electric images at different regions of the electrosensory mosaic, paying particular attention to the perioral region where a fovea has been described.
View Article and Find Full Text PDFThe role of different substructures of electroreceptor organs in signal encoding was explored using a heuristic computational model. This model consists of four modules representing the pre-receptor structures, the transducer cells, the synapses and the afferent fiber, respectively. Simulations reproduced previously obtained experimental data.
View Article and Find Full Text PDF