This study aimed to evaluate the effect of miR-23b-3p on growth hormone (GH) in pituitary cells of Yanbian yellow cattle. The mRNA and protein levels of GH and miR-23b-3p target genes were measured by real time fluorescence quantitative PCR (qPCR) and Western blot, respectively. The target relationship of miR-23b-3p was validated by double luciferase reporter gene system.
View Article and Find Full Text PDFMicroRNAs (miRNAs) play a vital role in improving meat quality by binding to messenger RNAs (mRNAs). We performed an integrated analysis of miRNA and mRNA expression profiling between bulls and steers based on the differences in meat quality traits. Fat and fatty acids are the major phenotypic indices of meat quality traits to estimate between-group variance.
View Article and Find Full Text PDFThis study aimed to evaluate the effect of miR-10b on growth hormone (GH) in pituitary cells of Yanbian yellow cattle. According to analysis of GH and somatostatin receptor 2 (SSTR2) mRNA and protein expression levels, we found that miR-10b targeted 3'UTR of SSTR2. Compared with the negative control (NC) group, GH mRNA transcription and protein expression in pituitary cells of Yanbian yellow cattle were significantly increased by adding miR-10b mimics (p < .
View Article and Find Full Text PDFYanbian yellow cattle breeding is limited by slow growth. We previously found that the miRNA miR-93 was differentially expressed between the blood exosomes of Yanbian yellow cattle and Han Yan cattle, which differ in growth characteristics. In this experiment, we evaluated the effects of miR-93 on growth hormone (GH) secretion by pituitary cells of Yanbian yellow cattle using qPCR, Western blot, Targetscan and RNA hybrid analysis software and Dual-Luciferase reporter gene system.
View Article and Find Full Text PDFProducing aflatoxin-detoxifizyme (ADTZ) in pigs to control the AFT contamination of pig feed is a new research strategy by transgenic technology. In this study, transgenic pigs specifically expressing ADTZ gene in the parotid gland were successfully produced by somatic cell nuclear transfer technology. The ADTZ activity in saliva of 6 transgenic pigs was found to be 7.
View Article and Find Full Text PDF