Angew Chem Int Ed Engl
December 2024
Electrocatalytic CO reduction reaction (eCORR) has captivated widespread attentions, yet achieving the requisite efficiency, selectivity and stability for industrial applications poses a persistent challenge. Here, we report the synthesis of 2D mesoporous Ni single atom catalysts in N-doped carbon framework via a bottom-up interfacial assembly strategy. The 2D mesoporous Ni-N-C catalyst showcases an ultrathin thickness (~6.
View Article and Find Full Text PDFFine-tuning the interfacial sites within heterogeneous catalysts is pivotal for unravelling the intricate structure-property relationship and optimizing their catalytic performance. Herein, a simple and versatile mixed-dimensional assembly approach is proposed to create nanocrystal-on-nanowire superstructures with precisely adjustable numbers of biphasic interfaces. This method leverages an efficient self-assembly process in which colloidal nanocrystals spontaneously organize onto Ag nanowires, driven by the solvophobic effect.
View Article and Find Full Text PDFChem Commun (Camb)
August 2024
We present a novel approach to adjust the symmetry of Au octahedral nanocrystals in two-dimensional superlattices. By modifying the content of free polymeric ligands added in the nanocrystal solution, we achieve Au nanocrystal superlattices with tip-on-tip arrangements that significantly enhance the surface-enhanced Raman spectroscopy performance.
View Article and Find Full Text PDFTo address the inherent limitations of conventional carbon nanotubes (CNTs), such as their tendency to agglomerate and scarcity of catalytic sites, the development of branched carbon nanotubes (BCNTs) with a unique hierarchical structure has emerged as a promising solution. Herein, gram scale quantities of densely branched and structurally consistent Ni-Fe decorated branched CNTs (Ni-Fe@BCNT) have been prepared. This uniform and densely branched architecture ensures excellent dispersibility and superior electrical conductivity.
View Article and Find Full Text PDFThe linear assembly of nanocrystals (NCs) with orientational order presents a significant challenge in the field of colloidal assembly. This study presents an efficient strategy for assembling oleic acid (OAH)-capped, faceted rare earth NCs─such as nanorods, nanoplates, and nanodumbbells─into flexible chain-like superstructures. Remarkably, these NC chains exhibit a high degree of particle orientation even with an interparticle distance reaching up to 15 nm.
View Article and Find Full Text PDFThe industrialization of lithium-sulfur (Li-S) batteries faces challenges due to the shuttling effect of lithium polysulfides (LiPSs) and the growth of lithium dendrites. To address these issues, a simple and scalable method is proposed to synthesize 2D membranes comprising a single layer of cubic graphitic cages encased with few-layer, curved MoS. The distinctive 2D architecture is achieved by confining the epitaxial growth of MoS within the open cages of a 2D-ordered mesoporous graphitic framework (MGF), resulting in MoS@MGF heterostructures with abundant sulfur vacancies.
View Article and Find Full Text PDFCorrection for 'Controllable synthesis of star-shaped FeCoMnO nanocrystals and their self-assembly into superlattices with low-packing densities' by Zhe Xia , , 2024, , 3409-3412, https://doi.org/10.1039/D4CC00332B.
View Article and Find Full Text PDFA persistent challenge in utilizing Au nanocrystals for surface-enhanced Raman spectroscopy (SERS) lies in achieving controllable superstructures that maximize SERS performance. Here, a novel strategy is proposed to enhance the SERS performance by precisely adjusting the tip arrangements of Au nanobipyramids (BPs) in two-dimensional (2D) superlattices (SLs). This is achieved through ligand-exchange of Au BPs, followed by liquid-air interfacial assembly, resulting in large-area, transferrable SL membranes.
View Article and Find Full Text PDFWe present a novel method for synthesizing monodisperse, star-shaped FeCoMnO nanocrystals with tunable concavity. Through liquid-air interfacial assembly, these colloidal nanostars can form two-dimensional superlattices, which are characterized by low packing densities. Notably, the ability to adjust the degree of concavity of nanostars allows for the tuning of the packing symmetry of the assembled superlattices.
View Article and Find Full Text PDFTwo-dimensional (2D) amorphous nanosheets with ultrathin thicknesses have properties that differ from their crystalline counterparts. However, conventional methods for growing 2D materials often produce either crystalline flakes or amorphous nanosheets with an uncontrollable thickness. Here, we report that ultrathin amorphous metal-oxide nanosheets featuring superior flatness can be realized through the molecularly confined topochemical transformation of MXene.
View Article and Find Full Text PDFOne-dimensional fiber architecture serves as an excellent catalyst support. The orderly arrangement of active materials on such a fiber substrate can enhance catalytic performance by exposing more active sites and facilitating mass diffusion; however, this remains a challenge. We developed an interfacial assembly strategy for the orderly distribution of metal nanocrystals on different fiber substrates to optimize their electrocatalytic performance.
View Article and Find Full Text PDFSelf-assembled superstructures composed of nanocrystals (NCs) have shown immense potential for enhancing the performance in electrocatalytic applications. However, there has been limited research on the self-assembly of platinum (Pt) into low-dimensional superstructures as efficient electrocatalysts for oxygen reduction reaction (ORR). In this study, we designed a unique tubular superstructure composed of monolayer or sub-monolayer carbon-armored platinum nanocrystals (Pt NCs) using a template-assisted epitaxial assembly approach.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2023
While Platinum (Pt)-based electrocatalysts have been extensively studied for the oxygen reduction reaction (ORR), improving their durability remains a challenge. One promising approach is to design structure-defined carbon supports that can uniformly immobilize Pt nanocrystals (NCs). In this study, we present an innovative strategy for constructing three-dimensional ordered, hierarchically porous carbon polyhedrons (3D-OHPCs) as an efficient support for immobilizing Pt NCs.
View Article and Find Full Text PDFThis contribution describes the self-assembly of colloidal nanodumbbells (NDs) with tunable shapes within cylindrical channels. We present that the intrinsic concave geometry of NDs endows them with peculiar packing and interlocking behaviors, which, in conjunction with the adjustable confinement constraint, leads to a variety of superstructures such as tilted-ladder chains and crossed-chain superlattices. A mechanistic investigation, corroborated by geometric calculations, reveals that the phase behavior of NDs under strong confinement can be rationalized by the entropy-driven maximization of the packing efficiency.
View Article and Find Full Text PDFScalable assembly of nanocrystals (NCs) into two-dimensional (2D) nanosheets has aroused great interest, yet it remains under-explored. This is because current 2D assembly methods rely mainly on the use of solid- or liquid-air interfaces, which are inherently difficult for upscaling and thus lack practicability. Here, with a microemulsion-based amphiphilic assembly technique, we achieve a fast and scalable preparation of free-standing nanosheets comprising few-layer, tightly packed NCs, namely, quasi-nanosheets (quasi-NSs).
View Article and Find Full Text PDFThe ordered coassembly of mixed-dimensional species-such as zero-dimensional (0D) nanocrystals and 2D microscale nanosheets-is commonly deemed impracticable, as phase separation almost invariably occurs. Here, by manipulating the ligand grafting density, we achieve ordered coassembly of 0D nanocrystals and 2D nanosheets under standard solvent evaporation conditions, resulting in macroscopic, freestanding hybrid-dimensional superlattices with both out-of-plane and in-plane order. The key to suppressing the notorious phase separation lies in hydrophobizing nanosheets with molecular ligands identical to those of nanocrystals but having substantially lower grafting density.
View Article and Find Full Text PDFThe novel and precise design of both a microscopic ligand and macroscopic structure has been demonstrated to improve the stability and potential optical applications of Ag clusters. The ligand with designed silane substituents on its thiophenol enabled the synthesized [Ag(SPhSi(OEt))](PPh) clusters to maintain UV-vis absorption for 13 h when heated at 60 °C in air and be readily coated with silica shells a one-pot reverse microemulsion method. This composite structure overcomes the issue that non-luminescent Ag clusters cannot be applied in photothermal and photoacoustic imaging due to their instability.
View Article and Find Full Text PDFManipulating the super-assembly of polymeric building blocks still remains a great challenge due to their thermodynamic instability. Here, we report on a type of three-dimensional hierarchical core-satellite SiO@monomicelle spherical superstructures via a previously unexplored monomicelle interfacial super-assembly route. Notably, in this superstructure, an ultrathin single layer of monomicelle subunits (~18 nm) appears in a typically hexagon-like regular discontinuous distribution (adjacent micelle distance of ~30 nm) on solid spherical interfaces (SiO), which is difficult to achieve by conventional super-assembled methods.
View Article and Find Full Text PDFCurrent protocols for synthesizing monodisperse platinum (Pt) nanoparticles typically involve the use of hydrocarbon molecules as surface-capping ligands. Using Pt nanoparticles as catalysts for the oxygen reduction reaction (ORR), however, these ligands must be removed to expose surface sites. Here, highly durable ORR catalysts are realized without ligand removal; instead, the native ligands are converted into ultrathin, conformal graphitic shells by simple thermal annealing.
View Article and Find Full Text PDFLayered MXene films have shown enormous potential for wide applications due to their high electrical conductivity and unique laminated microstructure. However, the intrinsic susceptibility to oxidation and the mechanical fragility of MXene films are the two major bottlenecks that prevent their widespread industrial applications. Here, a facile yet efficient assembly strategy is proposed to address these issues by increasing the alignment and compactness of MXene layers as well as strengthening the interlayer interactions.
View Article and Find Full Text PDFThe development and exploration of high-entropy materials with tunable chemical compositions and unique structural characteristics, although challenging, have attracted increasingly greater attention over the past few years. Here, we report a universal and green method to prepare high-entropy layered (oxy)hydroxide (HE-LH) nanosheets under ambient conditions. This method is based on a self-reliant electrochemical process, utilizing only low-cost metal foils and electrolytes as reactant, with no need of involving extra alkali salts and/or organic reagents.
View Article and Find Full Text PDFTwo-dimensional (2D) nanomaterials have received ever-increasing attention and in-depth exploration in multifarious fields on account of their superior mass transfer ability and abundant catalytic-active sites. Especially, the amorphous 2D nanomaterials feature unique properties distinct from atomic crystalline materials. However, the synthesis of high-quality and large-sized amorphous 2D nanomaterials encounters a big challenge.
View Article and Find Full Text PDFThe self-assembly of a small number of nanoparticles into superstructures that mimic the geometry of molecules provides an unprecedented route for creating materials with precisely defined structures and potentially programmable functionalities. Such nanoparticle clusters (NPCs), also known as colloidal molecules, have a wide range of applications due to the decisive ensemble effect. Here, a universal and straightforward strategy is developed to construct NPCs with tunable molecular-like geometries by confining the self-assembly of hydrophobic nanoparticles within micelles formed by amphiphilic copolymers.
View Article and Find Full Text PDFSelf-assembled nanocrystal superlattices represent an emergent class of designer materials with potentially programmable functionalities. The ability to construct hierarchically structured nanocrystal superlattices with tailored geometry and porosity is critical for extending their applications. Here, 2D superlattices comprising monolayer FeP nanoframes are synthesized through a space-confined topochemical transformation approach induced by the Kirkendall effect, using carbon-coated Fe O nanocube superlattices as a precursor.
View Article and Find Full Text PDFCommercial polymeric separators in lithium-ion batteries (LIBs) typically suffer from limited porosity, low electrolyte wettability, and poor thermal and mechanical stability, which can degrade the battery performance especially at high current densities. Here, the design of hierarchically porous, ultralight silica membranes as separator for high-performance LIBs is reported through the assembly of hollow mesoporous silica (HMS) particles on the cathode surface. The rich mesopores and large cavity of individual HMS particles provide low-tortuosity pathways for ionic transport, while simultaneously serving as electrolyte reservoir to further boost the electrochemical kinetics.
View Article and Find Full Text PDF