Publications by authors named "Angad Grewal"

We introduce a two-pronged strategy comprising focused ultrasound (FUS)-mediated blood-brain barrier (BBB) opening and long-circulating biodegradable nanoparticles (NPs) for systemic delivery of nucleic acids to the brain. Biodegradable poly(β-amino ester) polymer-based NPs were engineered to stably package various types of nucleic acid payloads and enable prolonged systemic circulation while retaining excellent serum stability. FUS was applied to a predetermined coordinate within the brain to transiently open the BBB, thereby allowing the systemically administered long-circulating NPs to traverse the BBB and accumulate in the FUS-treated brain region, where plasmid DNA or mRNA payloads produced reporter proteins in astrocytes and neurons.

View Article and Find Full Text PDF

Background: Hydrocephalus is managed by surgically implanting flow-diversion technologies such as differential pressure valves and antisiphoning devices; however, such hardware is prone to failure. Extensive research has tested them in flow-controlled settings using saline or de-aerated water, yet little has been done to validate their performance in a setting recreating physiologically relevant parameters, including intracranial pressures, cerebrospinal fluid (CSF) protein content, and body position.

Objective: To more accurately chart the episodic drainage characteristics of flow-diversion technology.

View Article and Find Full Text PDF