Vat photopolymerization (VPP), as an additive manufacturing (AM) technology, can conveniently produce ceramic parts with high resolution and excellent surface quality. However, due to the inherent brittleness and low toughness of ceramic materials, manufacturing defect-free ceramic parts remains a challenge. Many researchers have attempted to use carbon fibers as additives to enhance the performance of ceramic parts, but these methods are mostly applied in processes like fused deposition modeling and hot pressing.
View Article and Find Full Text PDFAlumina (AlO) ceramics are widely used in electronics, machinery, healthcare, and other fields due to their excellent hardness and high temperature stability. However, their high brittleness limits further applications, such as artificial ceramic implants and highly flexible protective gear. To address the limitations of single-phase toughening in AlO ceramics, some researchers have introduced a second phase to enhance these ceramics.
View Article and Find Full Text PDFIn order to actively promote green production and address these concerns, there is an urgent need for new packaging materials to replace traditional plastic products. Starch-based packaging materials, composed of starch, fiber, and plasticizers, offer a degradable and environmentally friendly alternative. However, there are challenges related to the high crystallinity and poor compatibility between thermoplastic starch and fibers, resulting in decreased mechanical properties.
View Article and Find Full Text PDF