Publications by authors named "Anex Jose"

Mesoionic compounds, with positive and negative charges, are expected to have dual-site highest occupied molecular orbital (HOMO, donor) and lowest unoccupied molecular orbital (LUMO, acceptor) reactivity. Herein, we report a novel class of air-stable mesoionic N-heterocyclic thiones (mNHTs) synthesized from abnormal N-heterocyclic carbenes (aNHCs). DFT studies revealed a highly polarized exocyclic thione moiety and computed Fukui function analysis suggests the dual-site HOMO/LUMO reactivity of mNHTs predicting donor property at the negatively charged 'S' center while acceptor property at the cationic imidazole ring.

View Article and Find Full Text PDF

Synthetic side-on peroxide-bound dicopper(II) () complexes are important for understanding the active site structure/function of many copper-containing enzymes. This work highlights the formation of new {Cu(μ-η:η-O)Cu} complexes (with electronic absorption and resonance Raman (rR) spectroscopic characterization) using tripodal NArOH ligands at -135 °C, which spontaneously participate in intramolecular phenolic H-atom abstraction (HAA). This results in the generation of bis(phenoxyl radical)bis(μ-OH)dicopper(II) intermediates, substantiated by their EPR/UV-vis/rR spectroscopic signatures and crystal structural determination of a diphenoquinone dicopper(I) complex derived from ligand -C═C coupling.

View Article and Find Full Text PDF

Copper ion is a versatile and ubiquitous facilitator of redox chemical and biochemical processes. These include the binding of molecular oxygen to copper(I) complexes where it undergoes stepwise reduction-protonation. A detailed understanding of thermodynamic relationships between such reduced/protonated states is key to elucidate the fundamentals of the chemical/biochemical processes involved.

View Article and Find Full Text PDF

An extended class of organic multi-redox systems was derived from bicyclic(alkyl)amino carbenes (BICAACs). The highly-conjugated system undergoes a total of 4 redox events spanning a 1.8 V redox range.

View Article and Find Full Text PDF

Much progress has been made in understanding the roles of the secondary coordination sphere (SCS) in tuning redox potentials of metalloproteins. In contrast, the impact of SCS on reactivity is much less understood. A primary example is how copper proteins can promote -nitrosylation (SNO), which is one of the most important dynamic post-translational modifications, and is crucial in regulating nitric oxide storage and transportation.

View Article and Find Full Text PDF

Thirteen boronated cyanometallates [M(CN-BR)] [M = Cr, Mn, Fe, Ru, Os; BR = BPh, B(2,4,6,-FCH), B(CF)] and one metalloboratonitrile [Cr(NC-BPh)] have been characterized by X-ray crystallography and spectroscopy [UV-vis-near-IR, NMR, IR, spectroelectrochemistry, and magnetic circular dichroism (MCD)]; CASSCF+NEVPT2 methods were employed in calculations of electronic structures. For (t) electronic configurations, the lowest-energy ligand-to-metal charge-transfer (LMCT) absorptions and MCD -terms in the spectra of boronated species have been assigned to transitions from cyanide π + B-C borane σ orbitals. CASSCF+NEVPT2 calculations including t and t orbitals reproduced t/t → t excitation energies.

View Article and Find Full Text PDF

Metal sites in biology often exhibit unique spectroscopic features that reflect novel geometric and electronic structures imposed by the protein that are key to reactivity. The blue copper active site involved in long range, rapid biological electron transfer is a classic example. This review presents an overview of both traditional and synchrotron based spectroscopic methods and their coupling to electronic structure calculations to understand the unique features of the blue copper active site, their contributions to function and the role of the protein in determining the geometric and electronic structure of the active site (called the "entatic state").

View Article and Find Full Text PDF

Mononuclear manganese(III) peroxido complexes are candidates for the reaction intermediates in manganese containing proteins, such as manganese superoxide dismutase (Mn-SOD) etc. In this study, manganese(III) peroxido complexes [Mn(O)(L3)] and [Mn(O)(L10)] ligated by anionic N3 type ligands with sterically hindered substituents, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (L3) and hydrotris(3-adamantyl-5-isopropyl-1-pyrazolyl)borate (L10), respectively, were structurally characterized. These complexes are the first examples of structurally characterized five-coordinate manganese(III) peroxido complexes.

View Article and Find Full Text PDF

Understanding the mechanistic coupling of molecular oxygen reduction and proton pumping for adenosine triphosphate synthesis during cellular respiration is the primary goal of research on heme-copper oxidases—the terminal complex in the membrane-bound electron transport chain. Cleavage of the oxygen-oxygen bond by the heme-copper oxidases forms the key intermediate P, which initiates proton pumping. This intermediate is now experimentally defined by variable-temperature, variable-field magnetic circular dichroism spectroscopy on a previously unobserved excited state feature associated with its heme iron(IV)-oxo center.

View Article and Find Full Text PDF

The primary and secondary coordination spheres of metal binding sites in metalloproteins have been investigated extensively, leading to the creation of high-performing functional metalloproteins; however, the impact of the overall structure of the protein scaffold on the unique properties of metalloproteins has rarely been studied. A primary example is the binuclear Cu center, an electron transfer cupredoxin domain of photosynthetic and respiratory complexes and, recently, a protein coregulated with particulate methane and ammonia monooxygenases. The redox potential, Cu-Cu spectroscopic features, and a valence delocalized state of Cu are difficult to reproduce in synthetic models, and every artificial protein Cu center to-date has used a modified cupredoxin.

View Article and Find Full Text PDF

Unraveling the mechanism of ceruloplasmin (Cp) is fundamentally important toward understanding the pathogenesis of metal-mediated diseases and metal neurotoxicity. Here we report that Cl, the most abundant anion in blood plasma, is a key component of Cp catalysis. Based on detailed spectroscopic analyses, Cl preferentially interacts with the partially reduced trinuclear Cu cluster (TNC) in Cp under physiological conditions and shifts the electron equilibrium distribution among the two redox active type 1 (T1) Cu sites and the TNC.

View Article and Find Full Text PDF

This study investigates the mechanism of O-O bond cleavage in heme-copper oxidase (HCO) enzymes, combining experimental and computational insights from enzyme intermediates and synthetic models. It is determined that HCOs undergo a proton-initiated O-O cleavage mechanism where a single water molecule in the active site enables proton transfer (PT) from the cross-linked tyrosine to a peroxo ligand bridging the heme Fe and Cu, and multiple H-bonding interactions lower the tyrosine p K. Due to sterics within the active site, the proton must either transfer initially to the O(Fe) (a high-energy intermediate), or from another residue over a ∼10 Å distance to reach the O(Cu) atom directly.

View Article and Find Full Text PDF

Main group metal based catalysis has been considered to be a cost-effective alternative way to the transition metal based catalysis, due to the high abundance of main group metals in the Earth's crust. Among the main group metals, aluminum is the most abundant (7-8%) in the Earth's crust, making the development of aluminum based catalysts very attractive. So far, aluminum based compounds have been popularly used as Lewis acids in a variety of organic reactions, but chemical transformation demanding a redox based process has never utilized an Al(III) complex as a catalyst.

View Article and Find Full Text PDF

Direct C-H arylation of arenes and heteroarenes to biaryls at ambient temperature has been accomplished using a phenalenyl-supported iron(III) catalyst. The present catalyst requires a chemical reductant such as potassium and functions without any light stimulation. C-H arylation of various heteroarenes including pyridine as well as unactivated arene such as benzene delivered good to excellent yield (28 examples, up to 92 %) at room temperature.

View Article and Find Full Text PDF

In recent years, merging different types of catalysis in a single pot has drawn considerable attention and these catalytic processes have mainly relied upon metals. However, development of a completely metal free approach integrating organic redox and organic Lewis acidic property into a single system has been missing in the current literature. This study establishes that a redox active phenalenyl cation can activate one of the substrates by single electron transfer process while the same can activate the other substrate by a donor-acceptor type interaction using its Lewis acidity.

View Article and Find Full Text PDF

The radical-mediated transition metal-free approach for the direct C-H bond functionalization of arenes is considered as a cost effective alternative to transition metal-based catalysis. An organic ligand-based radical plays a key role by generating an aryl radical which undergoes a subsequent functionalization process. The design principle of the present study takes advantage of a relatively stable odd alternant hydrocarbon-based phenalenyl (PLY) radical.

View Article and Find Full Text PDF

Single-molecular electronics is a potential solution to nanoscale electronic devices. While simple functional single-molecule devices such as diodes, switches, and wires are well studied, complex single-molecular systems with multiple functional units are rarely investigated. Here, a single-molecule AND logic gate is constructed from a proton-switchable edge-on gated pyridinoparacyclophane unit with a light-switchable diarylethene unit.

View Article and Find Full Text PDF

Stimuli-responsive structural reorganizations play an important role in biological processes, often in combination with kinetic control scenarios. In supramolecular mimics of such systems, light has been established as the perfect external trigger. Here, we report on the light-driven structural rearrangement of a small, self-assembled Pd3L6 ring based on photochromic dithienylethene (DTE) ligands into a rhombicuboctahedral Pd24L48 sphere measuring about 6.

View Article and Find Full Text PDF

The Continuum in the variation of the X-Z bond length change from blue-shifting to red-shifting through zero- shifting in the X-Z---Y complex is inevitable. This has been analyzed by ab-initio molecular orbital calculations using Z= Hydrogen, Halogens, Chalcogens, and Pnicogens as prototypical examples. Our analysis revealed that, the competition between negative hyperconjugation within the donor (X-Z) molecule and Charge Transfer (CT) from the acceptor (Y) molecule is the primary reason for the X-Z bond length change.

View Article and Find Full Text PDF