Calmyrin2 (CaMy2, Cib2) is a novel EF-hand calcium-binding protein found recently in skeletal muscles. CaMy2 mRNA was also detected in brain, but nothing is known about CaMy2 protein localization and properties in the brain. We report cloning and characterization of CaMy2 in rat brain: its expression pattern, intracellular localization and biochemical features.
View Article and Find Full Text PDFKinetics of the reactions of purine nucleoside phosphorylases (PNP) from E. coli (PNP-I, the product of the deoD gene) and human erythrocytes with their natural substrates guanosine (Guo), inosine (Ino), a substrate analogue N(7)-methylguanosine (m(7)Guo), and orthophosphate (P(i), natural cosubstrate) and its thiophosphate analogue (SP(i)), found to be a weak cosubstrate, have been studied in the pH range 5-8. In this pH range Guo and Ino exist predominantly in the neutral forms (pK(a) 9.
View Article and Find Full Text PDFAccumulated experimental evidence suggests that annexin A6 (AnxA6) is involved in ion transport in various tissues. Such a biological function is related either to the modulation of ion transport systems by AnxA6 or to the ion channel activity of the protein. While AnxA6 channel activity at low pH seems to be associated with a large conformational transition in the protein, the mechanism of GTP-induced ion channel formation remains obscure.
View Article and Find Full Text PDFWe postulate the existence of a pH-sensitive domain in annexin A6 (AnxA6), on the basis of our observation of pH-dependent conformational and orientation changes of this protein and its N- (AnxA6a) and C-terminal (AnxA6b) halves in the presence of lipids. Brewster angle microscopy shows that AnxA6, AnxA6a, and AnxA6b in the absence of lipids accumulate at the air-water interface and form a stable, homogeneous layer at pH below 6.0.
View Article and Find Full Text PDFReaction-induced infrared difference spectroscopy (RIDS) has been used to investigate the nature of interactions of human annexin A6 (ANXA6) with nucleotides. RIDS results for ANXA6, obtained after the photorelease of GTP-gamma-S, ATP, or P(i) from the respective caged compounds, were identical, suggesting that the interactions between the nucleotide and ANXA6 were dominated by the phosphate groups. Phosphate-induced structural changes in ANXA6 were small and affected only seven or eight amino acid residues.
View Article and Find Full Text PDFAnnexin VI (AnxVI) formed ion channels in planar lipid bilayers that were induced by the addition of millimolar guanosine 5'-triphosphate (GTP) at pH 7.4 and that were not accompanied by a penetration of the protein into the membrane hydrophobic region. GTP-influenced interactions of AnxVI with Ca2+/liposomes produced small structural alterations as revealed by circular dichroism and infrared spectroscopies.
View Article and Find Full Text PDF