Background: Alzheimer's disease (AD) is an incurable neurodegenerative disorder characterised by the progressive buildup of toxic amyloid-beta (Aβ) and tau protein aggregates eventually leading to cognitive decline. Recent lines of evidence suggest that an impairment of the glymphatic system (GS), a brain waste clearance pathway, plays a key role in the pathology of AD. Moreover, a relationship between GS function and neuronal network integrity has been strongly implicated.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia in the elderly. According to the amyloid hypothesis, the accumulation and deposition of amyloid-beta (Aβ) peptides play a key role in AD. Soluble Aβ (sAβ) oligomers were shown to be involved in pathological hypersynchronisation of brain resting-state networks in different transgenic developmental-onset mouse models of amyloidosis.
View Article and Find Full Text PDFThe combination of chemogenetics targeting specific brain cell populations with in vivo imaging techniques provides scientists with a powerful new tool to study functional neural networks at the whole-brain scale. A number of recent studies indicate the potential of this approach to increase our understanding of brain function in health and disease. In this review, we discuss the employment of a specific chemogenetic tool, designer receptors exclusively activated by designer drugs, in conjunction with non-invasive neuroimaging techniques such as PET and MRI.
View Article and Find Full Text PDFMicron-sized paramagnetic iron oxide particles (MPIO) are commonly used as contrast agents in magnetic resonance imaging (MRI) that produce negative contrast enhancement, i.e. darkening, on T2-weighted images.
View Article and Find Full Text PDFHere we report on a dual-modal (19) F and (1) H MRI paramagnetic probe with a self-immolative linker, Gd-DOMF-Gal. The enzymatic conversion of this probe by β-galactosidase resulted in a simultaneous turning on of the fluorine signal and changed ability of the Gd(3+) complex to modulate the (1) H MR signal intensity of the surrounding water molecules. A versatile imaging platform for monitoring a variety of enzymes by (19) F and (1) H MRI using this molecular design is proposed.
View Article and Find Full Text PDFNoninvasive monitoring of intracellular targets such as enzymes, receptors, or mRNA by means of magnetic resonance imaging (MRI) is increasingly gaining relevance in various research areas. A vital prerequisite for their visualization is the development of cell-permeable imaging probes, which can specifically interact with the target that characterizes the cellular or molecular process of interest. Here, we describe a dual-labeled probe, Gd-DOTA-k(FR)-Gal-CPP, designed to report the presence of intracellular β-galactosidase (β-gal) enzyme by MRI.
View Article and Find Full Text PDF