Leishmania major causes leishmaniasis and is grouped within the Trypanosomatidae family, which also includes the etiologic agent for African sleeping sickness, Trypanosoma brucei. Previous studies on T. brucei showed that acyl carrier protein (ACP) of mitochondrial fatty acid synthase type 2 (FASII) plays a crucial role in parasite survival.
View Article and Find Full Text PDFOur recognition of the mitochondria as being important sites of fatty acid biosynthesis is continuously unfolding, especially in light of new data becoming available on compromised fatty acid synthase type 2 (FASII) in mammals. For example, perturbed regulation of murine 17beta-HSD8 encoding a component of the mitochondrial FASII enzyme 3-oxoacyl-thioester reductase is implicated in polycystic kidney disease. In addition, over-expression in mice of the Mecr gene coding for 2-trans-enoyl-thioester reductase, also of mitochondrial FASII, leads to impaired heart function.
View Article and Find Full Text PDFMycobacterium tuberculosis mtFabD is an essential malonyl-CoA:AcpM transacylase and is important for vital protein-protein interactions within type 2 fatty acid synthase FASII. mtFabD contacts KasA, KasB, FabH, InhA, and possibly also HadAB, HadBC, and FabG1/MabA. Disruption of mtFabD's interactions during FASII has been proposed for drug development.
View Article and Find Full Text PDFCaenorhabditis elegans F09E10.3 (dhs-25) was identified as encoding a 3-oxoacyl-thioester reductase, potentially of the mitochondrial type 2 fatty acid synthase (FASII) system. Mitochondrial FASII is a relatively recent discovery in metazoans, and the relevance of this process to animal physiology has not been elucidated.
View Article and Find Full Text PDFMycobacterium tuberculosis represents a severe threat to human health worldwide. Therefore, it is important to expand our knowledge of vital mycobacterial processes, such as that effected by fatty acid synthase type 2 (FASII), as well as to uncover novel ones. Mycobacterial FASII undertakes mycolic acid biosynthesis, which relies on a set of essential enzymes, including 3-oxoacyl-AcpM reductase FabG1/Rv1483.
View Article and Find Full Text PDFThe significance of the chronicled role of the yeast transcription factor Adr1p in regulating ETR1 was examined in wild type and isogenic adr1Delta mutant cells. An ETR1-lacZ reporter construct was used to verify Adr1p-dependent gene expression. On solid glycerol medium containing X-gal, wild-type cells expressing the reporter turned blue, whereas the adr1Delta mutants remained white.
View Article and Find Full Text PDFThe sporulation-specific gene SPS18 shares a common promoter region with the oleic acid-inducible gene SPS19. Both genes are transcribed in sporulating diploid cells, albeit unevenly in favour of SPS18, whereas in haploid cells grown on fatty acids only SPS19 is highly activated. Here, SPS19 oleate-response element (ORE) conferred activation on a basal CYC1-lacZ reporter gene equally in both orientations, but promoter analysis using SPS18-lacZ reporter constructs with deletions identified a repressing fragment containing a midsporulation element (MSE) that could be involved in imposing directionality towards SPS19 in oleic acid-induced cells.
View Article and Find Full Text PDFWe report on Mycobacterium tuberculosis Rv0241c and Rv3389c, representing two physiologically functional 3-hydroxyacyl-thioester dehydratases (Htd). These enzymes are potentially entrained in type 2 fatty acid synthase (FASII). Mycobacterial FASII is involved in the synthesis of mycolic acids, which are the major constituents of the protective layer around the pathogen, shielding it from noxious chemicals and the host's immune system.
View Article and Find Full Text PDFWe describe the physiological function of heterologously expressed Mycobacterium tuberculosis InhA during de novo lipoic acid synthesis in yeast (Saccharomyces cerevisiae) mitochondria. InhA, representing 2-trans-enoyl-acyl carrier protein reductase and the target for the front-line antituberculous drug isoniazid, is involved in the activity of dissociative type 2 fatty acid synthase (FASII) that extends associative type 1 fatty acid synthase (FASI)-derived C(20) fatty acids to form C(60)-to-C(90) mycolic acids. Mycolic acids are major constituents of the protective layer around the pathogen that contribute to virulence and resistance to certain antimicrobials.
View Article and Find Full Text PDFWe report on the identification of Mycobacterium tuberculosis HtdZ (Rv0130), representing a novel 3-hydroxyacyl-thioester dehydratase. HtdZ was picked up by the functional complementation of Saccharomyces cerevisiae htd2Delta cells lacking the dehydratase of mitochondrial type II fatty acid synthase. Mutant cells expressing HtdZ contained dehydratase activity, recovered their respiratory ability, and partially restored de novo lipoic acid synthesis.
View Article and Find Full Text PDFBiochim Biophys Acta
December 2006
Unicellular organisms such as yeast constantly monitor their environment and respond to nutritional cues. Rapid adaptation to ambient changes may include modification and degradation of proteins; alterations in mRNA stability; and differential rates of translation. However, for a more prolonged response, changes are initiated in the expression of genes involved in the utilization of energy sources whose availability constantly fluctuates.
View Article and Find Full Text PDFPathophysiol Haemost Thromb
November 2006
It has long been known that the oxidative state of the various plasma lipoproteins modulates platelet aggregability, thereby contributing to atherogenesis. Low-density lipoprotein (LDL), occurring in vivo both in the native and oxidised forms, interacts directly with platelets, by binding to specific receptors. While the identity of the receptors for native LDL and some subfractions of high-density lipoproteins (HDL) remains disputed, apoE-containing HDL(2) binds to LRP8.
View Article and Find Full Text PDFHere we report on the cloning of a Candida tropicalis gene, ETR2, that is closely related to ETR1. Both genes encode enzymatically active 2-enoyl thioester reductases involved in mitochondrial synthesis of fatty acids (fatty acid synthesis type II) and respiratory competence. The 5'- and 3'-flanking (coding) regions of ETR2 and ETR1 are about 90% (97%) identical, indicating that the genes have evolved via gene duplication.
View Article and Find Full Text PDFSaccharomyces cerevisiae genes involved in fatty acid degradation contain in their promoters oleate response elements (OREs) and type 1 upstream activation sequences (UAS1s) that bind Pip2p-Oaf1p and Adr1p, respectively. The promoter of the PIP2 gene was found to contain a potential UAS1 that consists of a tandem array of CYCCRR half-sites in an overlapping arrangement with a previously characterized ORE. Electrophoretic mobility shift analysis demonstrated that Adr1p bound to UAS1PIP2, and Northern analysis in combination with a lacZ reporter gene confirmed that Adr1p influenced the transcription of PIP2.
View Article and Find Full Text PDFThe role of the Saccharomyces cerevisiae Pip2p-Oaf1p transcription factor was examined in reference to the regulation of the peroxin gene PEX25 involved in peroxisome proliferation. The PEX25 promoter contains an oleate response element (ORE)-like sequence comprising a CGG palindrome lacking a canonical adenine, which is considered critical for element function and Pip2p-Oaf1p binding. Pex25p levels were higher in wild-type cells grown on oleic acid medium than in those grown on ethanol, but this induction was abolished in cells devoid of Pip2p-Oaf1p.
View Article and Find Full Text PDFA genetic and cell-biological analysis is provided for Saccharomyces cerevisiae DML1 (YMR211w) encoding a Drosophila melanogaster Misato-like protein. Misato and Dml1p are descendants of an ancestral tubulin-like protein, and exhibit regions with similarity to members of a GTPase family that include eukaryotic tubulin and prokaryotic FtsZ. Deletion of DML1 was lethal to haploid cells; sporulated DML1/dml1Delta heterozygotes from different genetic backgrounds gave rise to no more than two viable spores per tetrad.
View Article and Find Full Text PDFPeroxisomal fatty acid degradation in the yeast Saccharomyces cerevisiae requires an array of beta-oxidation enzyme activities as well as a set of auxiliary activities to provide the beta-oxidation machinery with the proper substrates. The corresponding classical and auxiliary enzymes of beta-oxidation have been completely characterized, many at the structural level with the identification of catalytic residues. Import of fatty acids from the growth medium involves passive diffusion in combination with an active, protein-mediated component that includes acyl-CoA ligases, illustrating the intimate linkage between fatty acid import and activation.
View Article and Find Full Text PDFSaccharomyces cerevisiae ANT1/YPR128c encodes the peroxisomal adenine nucleotide transporter that provides ATP for intra-peroxisomal activation of medium-chain fatty acids. A lacZ reporter construct comprising the ANT1 promoter was shown to be comparatively more highly expressed in a wild-type strain grown on oleic acid, a long-chain fatty acid, than in pip2Delta(oaf1)Delta mutant cells that are defective in fatty acid induction. The ANT1 promoter was demonstrated to contain a deviant oleate response element (ORE) that could bind the Pip2p-Oaf1p transcription factor and confer activation on a basal CYC1-lacZ reporter gene.
View Article and Find Full Text PDFThe eukaryotic glyoxylate cycle has been previously hypothesized to occur in the peroxisomal compartment, which in the yeast Saccharomyces cerevisiae additionally represents the sole site for fatty acid beta-oxidation. The subcellular location of the key glyoxylate-cycle enzyme malate synthase 1 (Mls1p), an SKL-terminated protein, was examined in yeast cells grown on different carbon sources. Immunoelectron microscopy in combination with cell fractionation showed that Mls1p was abundant in the peroxisomes of cells grown on oleic acid, whereas in ethanol-grown cells Mls1p was primarily cytosolic.
View Article and Find Full Text PDF