Publications by authors named "Anelia Iantcheva"

Augmented knowledge of plant responses upon application of stress could help improve our understanding of plant tolerance under abiotic stress conditions. Histone acetylation plays an important role in gene expression regulation during plant growth and development and in the response of plants to abiotic stress. The current study examines the level of transcripts and free metabolite content in transgenic plants expressing a gene encoding histone acetyltransferase from () after its heterologous expression.

View Article and Find Full Text PDF
Article Synopsis
  • Most major crop plants are polyploid and require the introduction of new traits through genetic engineering for better yields.
  • The study demonstrates that the MsNAC39 gene can be used to identify dominant mutations in tetraploid alfalfa, resulting in multifoliate leaves, which is highly desirable in breeding.
  • The authors propose using a combination of mutant libraries and CRISPR/Cas9 technology to efficiently discover beneficial traits and enhance the breeding of both self-pollinating and cross-pollinating polyploid crops.
View Article and Find Full Text PDF

The F-box domain is a conserved structural protein motif that most frequently interacts with the SKP1 protein, the core of the SCFs (SKP1-CULLIN-F-box protein ligase) E3 ubiquitin protein ligases. As part of the SCF complexes, the various F-box proteins recruit substrates for degradation through ubiquitination. In this study, we functionally characterized an F-box gene (MtF-box) identified earlier in a population of Tnt1 retrotransposon-tagged mutants of Medicago truncatula and its Arabidopsis thaliana homolog (AtF-box) using gain- and loss-of-function plants.

View Article and Find Full Text PDF
Article Synopsis
  • - The study focuses on the complex interactions between legume plants and rhizobia, specifically how certain genes contribute to the formation and maintenance of nitrogen-fixing nodules, which are essential for plant growth.
  • - Researchers identified a new gene that regulates indeterminate nodule identity, and its expression is significant during early nodule formation, predominantly in the nodule central meristem.
  • - Loss of function in key genes led to severe nodule identity loss, resulting in the formation of root-like structures that cannot support symbiotic rhizobia, shedding light on the molecular mechanisms of nodule development in legumes.
View Article and Find Full Text PDF

In eukaryotes, histone acetyltransferases regulate the acetylation of histones and transcription factors, affecting chromatin structural organization, transcriptional regulation, and gene activation. To assess the role of HAC1, a gene encoding for a histone acetyltransferase in Medicago truncatula, stable transgenic lines with modified HAC1 expression in the model plants M. truncatula, Lotus japonicus, and Arabidopsis thaliana were generated by Agrobacterium-mediated transformation and used for functional analyses.

View Article and Find Full Text PDF

In eukaryotes, transcriptional regulation is determined by dynamic and reversible chromatin modifications, such as acetylation, methylation, phosphorylation, ubiquitination, glycosylation, that are essential for the processes of DNA replication, DNA-repair, recombination and gene transcription. The reversible and rapid changes in histone acetylation induce genome-wide and specific alterations in gene expression and play a key role in chromatin modification. Because of their sessile lifestyle, plants cannot escape environmental stress, and hence have evolved a number of adaptations to survive in stress surroundings.

View Article and Find Full Text PDF

Legume plants are important in agriculture because they represent an important source of protein for human and animal consumption. This high protein content results from their capacity to use atmospheric nitrogen for their nutrition as a consequence of their symbiotic interaction with rhizobia. Understanding this interaction at the molecular level is a prerequisite for its better use in agriculture and for the long term objective of its transfer to other crops.

View Article and Find Full Text PDF

Legumes, as protein-rich crops, are widely used for human food, animal feed and vegetable oil production. Over the past decade, two legume species, Medicago truncatula and Lotus japonicus, have been adopted as model legumes for genomics and physiological studies. The tobacco transposable element, Tnt1, is a powerful tool for insertional mutagenesis and gene inactivation in plants.

View Article and Find Full Text PDF

A sessile lifestyle forces plants to respond promptly to factors that affect their genomic integrity. Therefore, plants have developed checkpoint mechanisms to arrest cell cycle progression upon the occurrence of DNA stress, allowing the DNA to be repaired before onset of division. Previously, the WEE1 kinase had been demonstrated to be essential for delaying progression through the cell cycle in the presence of replication-inhibitory drugs, such as hydroxyurea.

View Article and Find Full Text PDF

Synchronized cell cultures are an indispensable tool for the identification and understanding of key regulators of the cell cycle. Nevertheless, the use of cell cultures has its disadvantages, because it represents an artificial system that does not completely mimic the endogenous conditions that occur in organized meristems. Here, we present a new and easy method for Arabidopsis thaliana root tip synchronization by hydroxyurea treatment.

View Article and Find Full Text PDF

Insertion mutant collections are powerful tools for genetic studies in plants. Although large-scale insertional mutagenesis using T-DNA is not feasible in legumes, the Tnt1 tobacco retrotransposon can be used as a very efficient mutagen in the Medicago truncatula R108 genotype. In this article, we show that Tnt1 can also be exploited to create insertional mutants via transformation and/or regeneration in the reference cultivar Jemalong.

View Article and Find Full Text PDF

We have identified an active Medicago truncatula copia-like retroelement called Medicago RetroElement1-1 (MERE1-1) as an insertion in the symbiotic NSP2 gene. MERE1-1 belongs to a low-copy-number family in the sequenced Medicago genome. These copies are highly related, but only three of them have a complete coding region and polymorphism exists between the long terminal repeats of these different copies.

View Article and Find Full Text PDF