Silica-Gold Nanostructures (SGNs), composed of a silica core decorated by gold nanoparticles, have the photothermal capacity to transform near-infrared (NIR) wavelengths into heat. This work presents a simple, efficient, and replicable method of synthesis of SGNs and their characterization by: (1) transmission electron microscopy to obtain micrographs of the particles and their corresponding diameter distribution; (2) diffraction patterns showing the amorphous atomic arraignment of the silica and the crystalline atomic arrangement of the gold nanoparticles; (3) zeta potential confirming the stability of the SGNs in a colloidal solution; and (4) thermal images displaying the capacity of SGNs to convert NIR irradiation into heat and their respective increment in temperature. SGNs were synthesized over silica cores with diameters of 63, 83, and 132 nm and decorated with a partial gold shell.
View Article and Find Full Text PDFGold salts have been used to treat rheumatoid arthritis (RA) since the 1940s, and, with advances in nanotechnology, the use of nanogold provides multiple options for anti-inflammatory therapies. This paper presents the synthesis and characterization of silica-gold nanostructures (SGNs) and their therapeutic effect in collagen-induced arthritis (CIA) in DBA/1 mice. At the end of the treatment, the synovial membranes, kidneys, livers, and spleens were dissected and analyzed by inductively coupled plasma mass spectroscopy (ICP) showing less than 0.
View Article and Find Full Text PDF