Publications by authors named "Anel Oosthuysen"

Scaffolds can be introduced as a source of tissue in reconstructive surgery and can help to improve wound healing. Amniotic membranes (AMs) as scaffolds for tissue engineering have emerged as promising biomaterials for surgical reconstruction due to their regenerative capacity, biocompatibility, gradual degradability, and availability. They also promote fetal-like scarless healing and provide a bioactive matrix that stimulates cell adhesion, migration, and proliferation.

View Article and Find Full Text PDF

Three-dimensional scaffolds have the capacity to serve as an architectural framework to guide and promote tissue regeneration. Parameters such as the type of material, growth factors, and pore dimensions are therefore critical in the scaffold's success. In this study, heparin has been covalently bound to the surface of macroporous polyurethane (PU) discs via two different loading methods to determine if the amount of heparin content had an influence on the therapeutic affinity loading and release of (VEGF ) in full thickness skin defects.

View Article and Find Full Text PDF

Unlabelled: Surface modification with heparin has previously been shown to increase vascularization of porous scaffolds. In order to determine its efficacy with sustained release, heparin (Hep) was covalently incorporated into degradable (Type D) and non-degradable (Type N) polyethylene glycol (PEG) hydrogels. After in vitro characterization of their physicochemical properties, growth factor (GF) loaded, heparinised Type D gels were formed within the pores of porous polyurethane disks, which were then implanted and evaluated in a subcutaneous model.

View Article and Find Full Text PDF

Porosity, pore size and pore interconnectivity are critical factors for cellular infiltration into electrospun scaffolds. This study utilized dual electrospinning with sacrificial fiber extraction to produce scaffolds with engineered porosity and mechanical properties. Subsequently, scaffolds were covalently grafted with heparin, a known anti-coagulant with growth-factor binding properties.

View Article and Find Full Text PDF

Dexamethasone (Dex) is used in a wide range of applications, but may have undesirable systemic side effects. A number of techniques have thus been developed to deliver the substance locally. In this study, dexamethasone was acrylated, pegylated, and tethered to hydrolytically degradable (acrylate based) and nondegradable (vinyl sulfone based) polyethylene glycol hydrogels by nucleophilic addition.

View Article and Find Full Text PDF

Despite indications that GA (glutaraldehyde)-crosslinked tissues remain prone to long-term degradation and calcification, it is still the reagent of choice in the fixation of bioprosthetic heart valves. We have shown previously that increased GA concentrations and diamine extension of cross-links with lysine incorporation lead to mitigated in vivo calcification, mainly of porcine aortic-wall tissue. The present study was performed to assess the correlation between the cross-link density of all three commonly used tissue types [PW (porcine aortic wall), PL (porcine aortic leaflet) and BP (bovine pericardium)] and tissue calcification in the subcutaneous rat model after GA treatment with or without lysine.

View Article and Find Full Text PDF

Porous scaffolds play an integral role in many tissue-engineering approaches, and the ability to improve vascularization, without eliciting an excessive inflammatory response, would constitute an important step towards achieving long-term healing and function of devices made from these materials. After having previously optimized the dimensional requirements of the well-defined pores, the present study aimed at a further shift from inflammation to vascularization via surface immobilization with heparin. Porous polyurethane disks were produced to contain well-defined pores (147 +/- 2 microm) with abundant interconnecting windows (67 +/- 2 microm).

View Article and Find Full Text PDF

Glutaraldehyde (GA) fixation has been used for more than 40 years as the preferred treatment to suppress immunogenicity and increase durability of bioprosthetic tissues (BPT) used in heart valve prostheses. This fixative and its reaction products have, however, been implicated in the calcific degeneration and long-term failure of these devices. The current study investigates stabilization of BPT and the mitigation/prevention of calcification by filling aortic wall samples with a synthetic poly(acrylamide) (pAAm) hydrogel, with and without pre-treatment with GA.

View Article and Find Full Text PDF