The significance of developing a selective and sensitive sensor for quality control purposes is underscored by the prevalent use of kojic acid (KA) in cosmetics, pharmaceuticals, and food items. KA's utility stems from its ability to inhibit tyrosinase activity. However, the instability of KA and its potential adverse effects have created a pressing need for accurate and sensitive sensors capable of analyzing real samples.
View Article and Find Full Text PDFTechnological advancements in the healthcare sector have pushed for improved sensors and devices for disease diagnosis and treatment. Recently, with the discovery of numerous biomarkers for various specific physiological conditions, early disease screening has become a possibility. Biomarkers are the body's early warning systems, which are indicators of a biological state that provides a standardized and precise way of evaluating the progression of disease or infection.
View Article and Find Full Text PDFA novel electrochemical sensor was constructed based on an enzyme-mediated physiological reaction between neurotransmitter serotonin per-oxidation to reconstruct dual-molecule 4,4'-dimeric-serotonin self-assembled derivative, and the potential biomedical application of the multi-functional nano-platform was explored. Serotonin accelerated the catalytic activity to form a dual molecule at the C4 position and created phenolic radical-radical coupling intermediates in a peroxidase reaction system. Here, 4,4' dimeric-serotonin possessed the capability to recognize intermolecular interactions between amine groups.
View Article and Find Full Text PDFThe last decade witnessed the emergence of a new family of 2D transition metal carbides and nitrides named MXenes, which quickly gained momentum due to their exceptional electrical, mechanical, optical, and tunable functionalities. These outstanding properties also rendered them attractive materials for biomedical and biosensing applications, including drug delivery systems, antimicrobial applications, tissue engineering, sensor probes, auxiliary agents for photothermal therapy and hyperthermia applications, etc. The hydrophilic nature of MXenes with rich surface functional groups is advantageous for biomedical applications over hydrophobic nanoparticles that may require complicated surface modifications.
View Article and Find Full Text PDFWe have developed a powerful biosensing strategy for immobilizing histidine-tagged (His-Tag)-oriented recombinant nano-protein immobilization on a chemically modified glassy carbon electrode (GCE) surfaces via (S)-N-(5-amino-1-carboxypentyl)iminodiacetic acid (ANTA) acting as a chelating Ni centered interaction. Here, we introduce a label-free electro-sensor to quantify cortisol levels in saliva samples for point-of-care testing (POCT). The high specificity of the chemically modified GCE was established by genetically bio-engineered metal-binding sites on the selected recombinant apoferritin (R-AFTN) nano-protein to impart functionality to its surface and by coating the carbon surface with the self-assembled monolayers of 4-aminobenzoic acid (4-ABA) attached to ANTA groups complexed with Ni transition metal ions.
View Article and Find Full Text PDFMakers of point-of-care devices and wearable diagnostics prefer flexible electrodes over conventional electrodes. In this study, a flexible electrode platform is introduced with a WS /graphene heterostructure on polyimide (WGP) for the concurrent and selective determination of dopamine and serotonin. The WGP is fabricated directly via plasma-enhanced chemical vapor deposition (PECVD) at 150 °C on a flexible polyimide substrate.
View Article and Find Full Text PDFLaccases are multicopper containing oxidase enzymes that are highly important in environmental remediation and biotechnology. To date, complex Copper containing materials have been reported as laccase mimic, and the possibility of a non-Cu laccase mimic remained unknown. In this work, we report an exceptionally simple functional laccase mimic based on coral-like silver citrate (AgCit) microstructures.
View Article and Find Full Text PDFSince the fabrication of the first electrochemical biosensor by Leland C. Clark in 1956, various labeled and label-free sensors have been reported for the detection of biomolecules. Labels such as nanoparticles, enzymes, Quantum dots, redox-active molecules, low dimensional carbon materials, etc.
View Article and Find Full Text PDFMultiple and sensitive detection of oncomiRs for accurate cancer diagnostics is still a challenge. Here, a synergetic amplification strategy was introduced by combining a MXene-based electrochemical signal amplification and a duplex-specific nuclease (DSN)-based amplification system for rapid, attomolar and concurrent quantification of multiple microRNAs on a single platform in total plasma. Synthesized MXene-TiCT modified with 5 nm gold nanoparticles (AuNPs) was casted on a dual screen-printed gold electrode to host vast numbers of DNA probes identically co-immobilized on dedicated electrodes.
View Article and Find Full Text PDFMXene nanosheets of type TiCT were modified with β-hydroxybutyrate dehydrogenase and then used as a biosensor for amperometric sensing of β-hydroxybutyrate. The MXene and the nanocomposite were characterized by X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The MXene has a layered structure and proved to be an excellent immobilization matrix providing good compatibility with the enzyme β-hydroxybutyrate dehydrogenase.
View Article and Find Full Text PDFThe facile one-pot hydrothermal synthesis of silver nanoparticles decorated silver tungstate nanorods (Ag@AgWO NRs) and their catalytic activities similar to those of natural enzymes catalase and peroxidase were reported. The Ag@AgWO NRs could catalyze the decomposition reaction of HO into water and oxygen besides catalyzing the reduction of HO into water in the presence of peroxidase substrates. Spectrophotometric and electrochemical methods were used to investigate the pH-dependent dual enzyme mimics exhibited by Ag@AgWO NRs.
View Article and Find Full Text PDFDevelopment of a very sensitive biosensor is accompanied with an inevitable shrinkage in the linear detection range. Here, we developed an electrochemical biosensor with a novel methodology to detect microRNA-21 (miR21) at an ultralow level and broad linear detection range. A three-way junction RNA structure was designed harboring (i) a methylene blue (MB)-modified hairpin structure at its one leg to function as the sensing moiety and (ii) the other two legs to be further hybridized with barcode gold nanoparticles (MB/barG) as the signal amplifiers.
View Article and Find Full Text PDF