Publications by authors named "Aneesh Goyal"

Intracellular signals triggered by DNA breakage flow through proteins containing BRCT (BRCA1 C-terminal) domains. This family, comprising 23 conserved phosphopeptide-binding modules in man, is inaccessible to small-molecule chemical inhibitors. Here, we develop Bractoppin, a drug-like inhibitor of phosphopeptide recognition by the human BRCA1 tandem (t)BRCT domain, which selectively inhibits substrate binding with nanomolar potency in vitro.

View Article and Find Full Text PDF

In mycobacteria, polyketide synthases and nonribosomal peptide synthetases (NRPSs) produce complex lipidic metabolites by using a thio-template mechanism of catalysis. In this study, we demonstrate that off-loading reductase (R) domain of mycobacterial NRPSs performs two consecutive [2 + 2]e(-) reductions to release thioester-bound lipopeptides as corresponding alcohols, using a nonprocessive mechanism of catalysis. The first crystal structure of an R domain from Mycobacterium tuberculosis NRPS provides strong support to this mechanistic model and suggests that the displacement of intermediate would be required for cofactor recycling.

View Article and Find Full Text PDF

Activation of fatty acids as acyl-adenylates by fatty acyl-AMP ligases (FAALs) in Mycobacterium tuberculosis is a variant of a classical theme that involves formation of acyl-CoA (coenzyme A) by fatty acyl-CoA ligases (FACLs). Here, we show that FAALs and FACLs possess similar structural fold and substrate specificity determinants, and the key difference is the absence of a unique insertion sequence in FACL13 structure. A systematic analysis shows a conserved hydrophobic anchorage of the insertion motif across several FAALs.

View Article and Find Full Text PDF

Background: Leishmania META1 has for long been a candidate molecule for involvement in virulence: META1 transcript and protein are up-regulated in metacyclic Leishmania. Yet, how META1 contributes to virulence remains unclear. We sought insights into the possible functions of META1 by studying its evolutionary origins.

View Article and Find Full Text PDF

The recent discovery of fatty acyl-AMP ligases (FAALs) in Mycobacterium tuberculosis (Mtb) provided a new perspective of fatty acid activation. These proteins convert fatty acids to the corresponding adenylates, which are intermediates of acyl-CoA-synthesizing fatty acyl-CoA ligases (FACLs). Presently, it is not evident how obligate pathogens such as Mtb have evolved such new themes of functional versatility and whether the activation of fatty acids to acyladenylates could indeed be a general mechanism.

View Article and Find Full Text PDF

Microbial type III polyketide synthases (PKSs) have revealed remarkable mechanistic as well as functional versatility. Recently, a type III PKS homolog from Azotobacter has been implicated in the biosynthesis of resorcinolic lipids, thus adding a new functional significance to this class of proteins. Here, we report the structural and mutational investigations of a novel type III PKS protein from Neurospora crassa involved in the biosynthesis of resorcinolic metabolites by utilizing long chain fatty acyl-CoAs.

View Article and Find Full Text PDF

FadD28 from Mycobacterium tuberculosis belongs to the fatty-acyl AMP ligase (FAAL) family of proteins. It is essential for the biosynthesis of a virulent phthiocerol dimycocerosate (PDIM) lipid that is only found in the cell wall of pathogenic mycobacteria. The N-terminal domain, comprising of the first 460 residues, was crystallized by the hanging-drop vapour-diffusion method at 295 K.

View Article and Find Full Text PDF