Publications by authors named "Aneeqa Ijaz"

Cough-based diagnosis for respiratory diseases (RDs) using artificial intelligence (AI) has attracted considerable attention, yet many existing studies overlook confounding variables in their predictive models. These variables can distort the relationship between cough recordings (input data) and RD status (output variable), leading to biased associations and unrealistic model performance. To address this gap, we propose the Bias-Free Network (RBF-Net), an end-to-end solution that effectively mitigates the impact of confounders in the training data distribution.

View Article and Find Full Text PDF

Fifth generation (5G) mobile communication technology can enable novel healthcare applications and augment existing ones. However, 5G-enabled healthcare applications demand diverse technical requirements for radio communication. Knowledge of these requirements is important for developers, network providers, and regulatory authorities in the healthcare sector to facilitate safe and effective healthcare.

View Article and Find Full Text PDF

With the advances in machine learning (ML) and deep learning (DL) techniques, and the potency of cloud computing in offering services efficiently and cost-effectively, Machine Learning as a Service (MLaaS) cloud platforms have become popular. In addition, there is increasing adoption of third-party cloud services for outsourcing training of DL models, which requires substantial costly computational resources (e.g.

View Article and Find Full Text PDF